Skip to main content
Log in

Quantitative Simplification of Filtered Simplicial Complexes

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We introduce a new invariant defined on the vertices of a given filtered simplicial complex, called codensity, which controls the impact of removing vertices on the persistent homology of this filtered complex. We achieve this control through the use of an interleaving type of distance between filtered simplicial complexes. We study the special case of Vietoris–Rips filtrations and show that our bounds offer a significant improvement over the immediate bounds coming from considerations related to the Gromov–Hausdorff distance. Based on these ideas we give an iterative method for the practical simplification of filtered simplicial complexes. As a byproduct of our analysis we identify a notion of core of a filtered simplicial complex which admits the interpretation as a minimalistic simplicial filtration which retains all the persistent homology information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adamaszek, M., Adams, H.: The Vietoris–Rips complexes of a circle. Pac. J. Math. 290(1), 1–40 (2017)

    Article  MathSciNet  Google Scholar 

  2. Adamaszek, M., Adams, H., Gasparovic, E., Gommel, M., Purvine, E., Sazdanovic, R., Wang, B., Wang, Y., Ziegelmeier, L.: Vietoris–Rips and Čech complexes of metric gluings (2017). arXiv:1712.06224

  3. Attali, D., Lieutier, A., Salinas, D.: Efficient data structure for representing and simplifying simplicial complexes in high dimensions. Int. J. Comput. Geom. Appl. 22(4), 279–303 (2012)

    Article  MathSciNet  Google Scholar 

  4. Barmak, J.A., Minian, E.G.: Strong homotopy types, nerves and collapses. Discrete Comput. Geom. 47(2), 301–328 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bauer, U., Lesnick, M.: Induced matchings of barcodes and the algebraic stability of persistence. In: Proceedings of the 30th Annual Symposium on Computational Geometry (SoCG’14), pp. 355–364. ACM, New York (2014)

  6. Bauer, U., Munch, E., Wang, Y.: Strong equivalence of the interleaving and functional distortion metrics for Reeb graphs. In: Proceedings of the 31st International Symposium on Computational Geometry (SoCG’15). Leibniz International Proceedings in Informatics, vol. 34, pp. 461–475. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2015)

  7. Blumberg, A.J., Lesnick, M.: Universality of the homotopy interleaving distance (2017). arXiv:1705.01690

  8. Blumberg, A.J., Mandell, M.A.: Quantitative homotopy theory in topological data analysis. Found. Comput. Math. 13(6), 885–911 (2013)

    Article  MathSciNet  Google Scholar 

  9. Botnan, M.B., Spreemann, G.: Approximating persistent homology in Euclidean space through collapses. Appl. Algebra Eng. Commun. Comput. 26(1–2), 73–101 (2015)

    Article  MathSciNet  Google Scholar 

  10. Bubenik, P., Scott, J.A.: Categorification of persistent homology. Discrete Comput. Geom. 51(3), 600–627 (2014)

    Article  MathSciNet  Google Scholar 

  11. Burago, D., Burago, Yu., Ivanov, S.: A Course in Metric Geometry Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  12. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)

    Article  MathSciNet  Google Scholar 

  13. Cavanna, N.J., Jahanseir, M., Sheehy, D.R.: A geometric perspective on sparse filtrations (2015). arXiv:1506.03797

  14. Chazal, F., Cohen-Steiner, D., Guibas, L.J., Mémoli, F., Oudot, S.Y.: Gromov–Hausdorff stable signatures for shapes using persistence. Comput. Gr. Forum 28(5), 1393–1403 (2009)

    Article  Google Scholar 

  15. Chazal, F., De Silva, V., Glisse, M., Oudot, S.: The Structure and Stability of Persistence Modules. SpringerBriefs in Mathematics. Springer, Cham (2016)

    Book  Google Scholar 

  16. Chazal, F., De Silva, V., Oudot, S.: Persistence stability for geometric complexes. Geom. Dedicata 173(1), 193–214 (2014)

    Article  MathSciNet  Google Scholar 

  17. Chowdhury, S., Mémoli, F.: Persistent homology of asymmetric networks: an approach based on Dowker filtrations (2016). arXiv:1608.05432

  18. Dey, T.K., Fan, F., Wang, Y.: Computing topological persistence for simplicial maps. In: Proceedings of the 30th Annual Symposium on Computational Geometry (SoCG’14), pp. 345–354. ACM, New York (2014)

  19. Dey, T.K., Mémoli, F., Wang, Y.: Multiscale mapper: topological summarization via codomain covers. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’16), pp. 997–1013. SIAM, Philadelphia (2016)

  20. Dey, T.K., Shi, D., Wang, Y.: SimBa: An efficient tool for approximating rips-filtration persistence via simplicial batch-collapse (2016). arXiv:1609.07517

  21. Edelsbrunner, H., Harer, J.L.: Computational Topology: An Introduction. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  22. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pp. 454–463. IEEE, Los Alamitos (2000)

  23. Edelsbrunner, H., Morozov, D.: Persistent homology: theory and practice. Technical report, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley (2012)

  24. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  25. Hausmann, J.-C.: On the Vietoris–Rips complexes and a cohomology theory for metric spaces. In: Quinn, F. (ed.) Prospects in Topology Annals of Mathematics Studies, vol. 138, pp. 175–188. Princeton University Press, Princeton (1995)

    Google Scholar 

  26. Kerber, M., Sharathkumar, R.: Approximate Čech complex in low and high dimensions. International Symposium on Algorithms and Computation. Lecture Notes in Computer Science, vol. 8283, pp. 666–676. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  27. Latschev, J.: Vietoris–Rips complexes of metric spaces near a closed Riemannian manifold. Arch. Math. 77(6), 522–528 (2001)

    Article  MathSciNet  Google Scholar 

  28. Lefschetz, S.: Algebraic Topology. American Mathematical Society Colloquium Publications, vol. 27. American Mathematical Society, New York (1942)

    MATH  Google Scholar 

  29. Lesnick, M.: The theory of the interleaving distance on multidimensional persistence modules. Found. Comput. Math. 15(3), 613–650 (2015)

    Article  MathSciNet  Google Scholar 

  30. Matoušek, J.: LC reductions yield isomorphic simplicial complexes. Contrib. Discrete Math. 3(2), 37–39 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Mémoli, F.: A distance between filtered spaces via tripods (2017). arXiv:1704.03965

  32. Morozov, D., Beketayev, K., Weber, G.: Interleaving distance between merge trees. Presented at TopoInVis’13. https://www.sci.utah.edu/topoinvis13.html

  33. Munkres, J.R.: Elements of Algebraic Topology. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  34. Sheehy, D.R.: Linear-size approximations to the Vietoris–Rips filtration. Discrete Comput. Geom. 49(4), 778–796 (2013)

    Article  MathSciNet  Google Scholar 

  35. Zomorodian, A.: The tidy set: a minimal simplicial set for computing homology of clique complexes. In: Proceedings of the 26th Annual Symposium on Computational Geometry (SoCG’10), pp. 257–266. ACM, New York (2010)

  36. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Facundo Mémoli.

Additional information

Editor in Charge: Kenneth Clarkson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by NSF Grants IIS-1422400 and CCF-1526513.

Appendix

Appendix

Proof of Proposition 2.8

Let R be a correspondence between MN (i.e. \(R \subseteq M \times N\) and \(\pi _M(R)=M\), \(\pi _N(R)=N\)). Note that R can be considered as a tripod between \(X^*,Y^*\). By Remark 2.7, it is enough to show that the distortion of R as a metric correspondence between MN is same with the distortion of R as a tripod between \(X^*,Y^*\). Let us denote the first one by \(\mathrm {dis}^\mathrm{met}(R)\) and the second one by \(\mathrm {dis}^\mathrm{tri}(R)\).

Claim

\(\mathrm {dis}^\mathrm{tri}(R) \ge \mathrm {dis}^\mathrm{met}(R)\).

Proof

By Remark 2.3, the size functions of \(X^*,Y^*\) are given by the diameter. Hence we have:

$$\begin{aligned} \mathrm {dis}^\mathrm{tri}(R)&\ge \max _{(x,y),(x',y') \in R} |\mathrm {diam}_M(x,x')-\mathrm {diam}_N(y,y')|\\&= \max _{(x,y),(x',y') \in R} |d_M(x,x')-d_N(y,y')|\\&=\mathrm {dis}^\mathrm{met}(R). \end{aligned}$$

\(\square \)

Claim

\(\mathrm {dis}^\mathrm{tri}(R) \le \mathrm {dis}^\mathrm{met}(R)\).

Proof

Let \(\alpha \in \mathrm {P}(R)\). Let \(\alpha \in \mathrm {P}(R)\) such that

$$\begin{aligned} \mathrm {dis}^\mathrm{tri}(R)=|\mathrm {diam}_M(\pi _M(\alpha ))-\mathrm {diam}_N(\pi _N(\alpha ))|. \end{aligned}$$

Without loss of generality, we can assume that

$$\begin{aligned} \mathrm {diam}_M(\pi _M(\alpha )) \ge \mathrm {diam}_N(\pi _N(\alpha )). \end{aligned}$$

Let \(x,x'\) be points in \(\pi _M(\alpha )\) so that

$$\begin{aligned} \mathrm {diam}_M(\pi _M(\alpha ))=d_M(x,x'). \end{aligned}$$

There exists points \(y,y'\) in N such that \((x,y),(x',y') \in \alpha \). Then we have

$$\begin{aligned} \mathrm {dis}^\mathrm{tri}(R)&= \mathrm {diam}_M(\pi _M(\alpha ))-\mathrm {diam}_N(\pi _N(\alpha )) \\&= d_M(x,x')-\mathrm {diam}_N(\pi _N(\alpha ))\\&\le d_M(x,x')-d_N(y,y')\\&\le \mathrm {dis}^\mathrm{met}(R). \end{aligned}$$

\(\square \)

Proof of Proposition 2.9

Non-negativity and symmetry properties follows from the definition. \(d_\mathrm {GH}(X^*,X^*)=0\) since the distortion of the identity tripod on the vertex set of X is 0. Let us show the triangle inequality. Let \((Z,p,p')\) be a tripod between \(X^*,X'^*\) and \((Z',q',q'')\) be a tripod between \(X'^*,X''^*\). Let \(Z''\) be the fiber product

$$\begin{aligned} Z''=Z {_{p'}\times _{q'}} Z' . \end{aligned}$$

Then \((Z'',p \circ \pi _Z,q'' \circ \pi _{Z'})\) is a tripod between \(X^*,X''^*\). Given \(\alpha \in \mathrm {P}(Z'')\), we have

$$\begin{aligned} |\mathrm {D}_X(p \circ \pi _Z(\alpha ))- \mathrm {D}_{X''}(q'' \circ \pi _{Z'})|&\le |\mathrm {D}_X(p \circ \pi _Z(\alpha ))-\mathrm {D}_{X'}(p' \circ \pi _Z(\alpha ))| \\&\quad +|\mathrm {D}_{X'}(p' \circ \pi _Z(\alpha )) - \mathrm {D}_{X''}(q'' \circ \pi _{Z'}(\alpha ))| \\&=|\mathrm {D}_X(p \circ \pi _Z(\alpha ))-\mathrm {D}_{X'}(p' \circ \pi _Z(\alpha ))| \\&\quad +|\mathrm {D}_{X'}(q' \circ \pi _{Z'}(\alpha )) - \mathrm {D}_{X''}(q'' \circ \pi _{Z'}(\alpha ))| \\&\le \mathrm {dis}(Z)+\mathrm {dis}(Z'). \end{aligned}$$

Since \(\alpha \in \mathrm {P}(Z'')\) was arbitrary, \(\mathrm {dis}(Z'') \le \mathrm {dis}(Z')+\mathrm {dis}(Z'')\). Since the tripods \(Z,Z'\) were arbitrary, \(d_\mathrm {GH}(X^*,X''^*) \le d_\mathrm {GH}(X^*,X'^*)+d_\mathrm {GH}(X'^*,X''^*)\). \(\square \)

Proof of Lemma 2.23

Let \(p_X\) (resp. \(p_Y\)) be the projection map from R to the vertex set of \(X^*\) (resp. \(Y^*)\). Let \(\alpha \) be a non-empty subset of the vertex set of \(X^*\). Note that

$$\begin{aligned} f(\alpha ) \subseteq p_Y(p_X^{-1}(\alpha )). \end{aligned}$$

Let \(\varepsilon :=\mathrm {dis}(R)\). We have

$$\begin{aligned} \mathrm {D}_{Y^*}(f(\alpha ))&\le \mathrm {D}_{Y^*}(p_Y(p_X^{-1}(\alpha )))\\&\le \mathrm {D}_{X^*}(p_X(p_X^{-1}(\alpha )))+\varepsilon \\&=\mathrm {D}_{X^*}(\alpha )+\varepsilon . \end{aligned}$$

Hence \(\mathrm {deg}(f) \le \varepsilon \). Similarly \(\mathrm {deg}(g) \le \varepsilon \).

Note that \(p_X(p_Y^{-1}(f(\alpha )))\) contains both \(\alpha \) and \(g \circ f(\alpha )\). Hence

$$\begin{aligned} \mathrm {D}_{X^*}(g \circ f (\alpha ) \cup \alpha )&\le \mathrm {D}_{X^*}(p_X(p_Y^{-1}(f(\alpha ))))\\&\le \mathrm {D}_{Y^*}(p_Y(p_Y^{-1}(f(\alpha ))))+\varepsilon \\&= \mathrm {D}_{Y^*}(f(\alpha ))+\varepsilon \\&\le \mathrm {D}_{X^*}(\alpha )+2\varepsilon . \end{aligned}$$

This shows that

$$\begin{aligned} \mathrm {codeg}^\infty (g \circ f, \mathrm {id}_{X^*})\le \mathrm {codeg}(g \circ f, \mathrm {id}_{X^*}) \le 2\varepsilon . \end{aligned}$$

Similarly,

$$\begin{aligned} \mathrm {codeg}^\infty (f \circ g,\mathrm {id}_{Y^*}) \le 2\varepsilon . \end{aligned}$$

This completes the proof. \(\square \)

Proof of Proposition 4.6

Let us start by fixing some notation. Let A be a finite subset of X. We denote the homology maps induced by the inclusion \(A \hookrightarrow X\) by \(\iota _A:\mathrm {H}_k(\mathrm {VR}^r(A)) \rightarrow \mathrm {H}_k(\mathrm {VR}^r(X))\). If B is another finite subset of X such that \(A \subseteq B\), we denote the homology map induced by this inclusion by \(\iota _{A,B}:\mathrm {H}_k(\mathrm {VR}^r(A)) \rightarrow \mathrm {H}_k(\mathrm {VR}^r(B))\). If z is chain in \(\mathrm {VR}^r(X)\) such that the vertices of z is contained in A, we denote the homology class it represents in \(\mathrm {H}_k(\mathrm {VR}^r(A))\) by \([z]_A\).

The homology maps \(\iota _A:\mathrm {H}_k(\mathrm {VR}^r(A)) \rightarrow \mathrm {H}_k(\mathrm {VR}^r(X))\) shows that \(\mathrm {H}_k(\mathrm {VR}^r(X))\) is a cocone for J. Let us show that it is universal. Let M be another cocone for J with morphisms \(\phi _A:\mathrm {H}_k(\mathrm {VR}^r(A)) \rightarrow M\). Define a map \(u:\mathrm {H}_k(\mathrm {VR}^r(X)) \rightarrow M\) as follows. Given a homology class c in \(\mathrm {H}_k(\mathrm {VR}^r(X))\), let z be a cycle representing it and let A be a finite subset containing the vertices of z. Define \(u(c):= \phi _A([z]_A)\). Let us show that this map is well defined. Let \(z'\) be another cycle representing c and \(A'\) be a finite subset containing the vertices of \(z'\). Note that \(z-z'\) is a boundary in \(\mathrm {VR}^r(X)\), let w be a chain in \(\mathrm {VR}^r(X)\) so that \(\partial w = z-z'\). Let B a finite subspace of X containing \(A,A'\) and vertices of w. Note that \([z]_B=[z']_B\) as w is contained in B. We have

$$\begin{aligned} \phi _A([z]_A)= & {} \phi _B \circ \iota _{A,B}([z]_A)=\phi _B([z]_B)=\phi _B([z']_B)\\= & {} \phi _B \circ \iota _{A',B}([z']_B)=\phi _{A'}([z']_{A'}). \end{aligned}$$

This shows that \(u:\mathrm {H}_k(\mathrm {VR}^r(X)) \rightarrow M\) is well defined. It is an R-module homomorphism since if \(c,c'\) are homology classes in \(\mathrm {H}_k(\mathrm {VR}^r(X))\) represented by cycles \(z,z'\) whose vertices are contained in a finite subspace A, then for any \(\lambda \in R\) we have

$$\begin{aligned} u(c + \lambda \, c')= & {} \phi _A([z]_A + \lambda \, [z']_A)\\= & {} \phi _A([z]_A)+\,\lambda \, \phi _A([z']_A) =u(c)+\lambda \, u(c'). \end{aligned}$$

Given a homology class c in \(\mathrm {H}_k(\mathrm {VR}^r(A))\) which is represented by a cycle z, we have

$$\begin{aligned} u \circ \iota _A (c)= \phi _A([z]_A)=\phi _A(c), \end{aligned}$$

hence u commutes with structure maps. The uniqueness of such u follows from the fact that for every homology class c in \(\mathrm {H}_k(\mathrm {VR}^r(X))\) there exists a finite subset A such that c is contained in the image of \(\iota _A:\mathrm {H}_k(\mathrm {VR}^r(A)) \rightarrow \mathrm {H}_k(\mathrm {VR}^r(X))\). \(\square \)

Proof of Proposition 4.7

Let \(p \in X\), \(q \in Y\) be the chosen points for the wedge sum. Note that \(\mathrm {VR}^r(X) \vee \mathrm {VR}^r(Y)\) is contained in \(\mathrm {VR}^r(X \vee Y)\) for each \(r \ge 0\). Let us show that this inclusion induces an isomorphism between homology groups. Note that this is enough for our proof as these inclusions commutes with the structure maps of both filtered simplicial complexes.

Order the disjoint union of \(X \vee Y\) and denote the smallest element of a finite subset \(\sigma \) by \(\min (\sigma )\). It is known that for a simplicial complex S with ordered vertices, the map \(B(S) \rightarrow S\) from the barycentric subdivision B(S) of S to S defined by \(\sigma \mapsto \min (\sigma )\) is simplicial and induces an isomorphism between homology groups [28, pp. 166, 167].

Consider the map \(f:B\big (\mathrm {VR}^r(X \vee Y) \big ) \rightarrow \mathrm {VR}^r(X) \vee \mathrm {VR}^r(Y)\) defined as follows: \(f(\sigma )=\min (\sigma )\) if \(\sigma \) is contained in X or Y, \(f(\sigma )=p=q\) else. Let us see that this map is simplicial. Take a simplex \(S=(\sigma _1 \subset \sigma _2 \subset \dots \subset \sigma _n)\) in \(B\big (\mathrm {VR}^r(X \vee Y) \big )\). Without loss of generality, assume that k is the maximal integer such that for \(i \le k\), \(\sigma _i \subseteq X\) and furthermore assume that for \(i>k\), \(\sigma _i\) is neither contained in X nor in Y. If \(k=n\), then \(f(S) \subseteq \sigma _n\), hence it is a simplex in \(\mathrm {VR}^r(X) \vee \mathrm {VR}^r(Y)\). If \(k \ne n\), then \(\sigma _n\) contains elements from both X and Y, hence \(\sigma _n \cup \{p\}\) is a simplex in in \(\mathrm {VR}^r(X \vee Y)\), which in turn implies that \(\sigma _k \cup \{p\}\) is a simplex in \(\mathrm {VR}^r(X)\). Hence, \(f(S) \subseteq \sigma _k \cup \{p\}\) is a simplex in \(\mathrm {VR}^r(X) \vee \mathrm {VR}^r(Y)\). Therefore, f is simplicial.

Consider the following (non-commutative) diagram:

figure b

Here, ij are inclusions and \(\varphi ,\psi \) are maps defined by \(\sigma \mapsto \min (\sigma )\). This diagram is non-commutative only because \(i \circ f\) is not equal to \(\psi \). All other commutativity relations hold. Let us show that \(i \circ f\) is contiguous to \(\psi \), hence the non-commutativity disappears when we pass to homology.

As above, take a simplex \(S=(\sigma _1 \subset \sigma _2 \subset \dots \subset \sigma _n)\) in \(B\big (\mathrm {VR}^r(X \vee Y) \big )\). Without loss of generality, assume that k is the maximal integer such that for \(i \le k\), \(\sigma _i \subseteq X\) and furthermore assume that for \(i>k\), \(\sigma _i\) is neither contained in X nor in Y. If \(k=n\), then S is in the image of j, therefore \(i \circ f(S) = \psi (S)\). If \(k<n\), then we have

$$\begin{aligned} i \circ f(S) \cup \psi (S) \subseteq \sigma _n \cup \{p \} \in \mathrm {VR}^r(X\vee Y). \end{aligned}$$

This shows the contiguity. Now we have the following commutative diagram:

figure c

Now, the induced map \(f_*\) is surjective since \(\varphi _*\) is surjective and \(f_*\) is injective since \(\psi _*\) is injective. Hence \(f_*\) is an isomorphism, which implies that \(i_*=\psi _* \circ f_*^{-1}\) is an isomorphism. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mémoli, F., Okutan, O.B. Quantitative Simplification of Filtered Simplicial Complexes. Discrete Comput Geom 65, 554–583 (2021). https://doi.org/10.1007/s00454-019-00104-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-019-00104-y

Keywords

Mathematics Subject Classification

Navigation