Abstract
We call an order type inscribable if it is realized by a point configuration where all extreme points are all on a circle. In this paper, we investigate inscribability of order types. We first construct an infinite family of minimally uninscribable order types. The proof of uninscribability mainly uses Möbius transformations and the Frantz ellipse. We further show that every simple order type with at most two interior points is inscribable, and that the number of such order types is \(\Theta (\frac{4^n}{n^{3/2}})\). We also suggest open problems around inscribability.
Similar content being viewed by others
References
Akopyan, A., Edelsbrunner, H., Nikitenko, A.: The beauty of random polytopes inscribed in the 2-sphere. Exp. Math. (2021). https://doi.org/10.1080/10586458.2021.1980459
Alon, N.: The number of polytopes, configurations and real matroids. Mathematika 33(1), 62–71 (1986)
Björner, A., Vergnas, M.L., Sturmfels, B., White, N., Ziegler, G.M.: Oriented Matroids. Encyclopedia of Mathematics and Its Applications, vol. 46. Cambridge University Press, Cambridge (1999)
Bóna, M. (ed.): Handbook of Enumerative Combinatorics. Discrete Mathematics and Its Applications (Boca Raton). CRC Press, Boca Raton (2015)
Brouwer, A.E.: The Enumeration of Locally Transitive Tournaments, vol. 138. Mathematisch Centrum, Amsterdam (1980)
Chen, H., Padrol, A.: Scribability problems for polytopes. Eur. J. Combin. 64, 1–26 (2017)
Doolittle, J., Labbé, J.-P., Lange, C.E.M.C., Sinn, R., Spreer, J., Ziegler, G.M.: Combinatorial inscribability obstructions for higher dimensional polytopes. Mathematika 66(4), 927–953 (2020)
Edelsbrunner, H., Nikitenko, A.: Random inscribed polytopes have similar radius functions as Poisson–Delaunay mosaics. Ann. Appl. Probab. 28(5), 3215–3238 (2018)
Felsner, S., Valtr, P.: Coding and counting arrangements of pseudolines. Discrete Comput. Geom. 46(3), 405–416 (2011)
Firsching, M.: Realizability and inscribability for simplicial polytopes via nonlinear optimization. Math. Program. 166(1), 273–295 (2017)
Frantz, M.: How conics govern Möbius transformations. Am. Math. Mon. 111(9), 779–790 (2004)
Goaoc, X., Welzl, E.: Convex hulls of random order types. J. ACM 70(1), 1–47 (2023)
Gonska, B.: About f-vectors of inscribed simplicial polytopes. Discrete Comput. Geom. 55(3), 497–521 (2016)
Goodman, J.E., Pollack, R.: Upper bounds for configurations and polytopes in \({ {R}}^d\). Discrete Comput. Geom. 1(3), 219–227 (1986)
Grünbaum, B.: Arrangements and spreads. In: Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, vol. 10. American Mathematical Society, Providence (1972)
Grünbaum, B.: Convex Polytopes. Graduate Texts in Mathematics, vol. 221. Springer, New York (2003)
Levi, F.: Die teilung der projektiven ebene durch gerade oder pseudogerade. Ber. Math.-Phys. Kl. Sächs. Akad. Wiss. 78, 256–267 (1926)
MacMahon, P.A.: Combinatory Analysis, vols. I, II (bound in one volume). Dover Phoenix Editions. Dover, Mineola (2004)
MacMahon, P.A.: Combinatory Analysis, vol. 2. Cambridge University Press, Cambridge (1916)
Milnor, J.: On the Betti numbers of real varieties. Proc. Am. Math. Soc. 15, 275–280 (1964)
Padrol, A., Ziegler, G.M.: Six topics on inscribable polytopes. In: Advances in Discrete Differential Geometry, pp. 407–419. Springer, Berlin (2016)
Palmer, E.M., Robinson, R.W.: Enumeration of self-dual configurations. Pac. J. Math. 110(1), 203–221 (1984)
Pilz, A., Welzl, E., Wettstein, M.: From crossing-free graphs on wheel sets to embracing simplices and polytopes with few vertices. Discrete Comput. Geom. 64(3), 1067–1097 (2020)
Richter-Gebert, J.: Perspectives on Projective Geometry. Springer, Heidelberg (2011)
Ringel, G.: Teilungen der Ebene durch Geraden oder topologische Geraden. Math. Z. 64, 79–102 (1956)
Rivin, I.: A characterization of ideal polyhedra in hyperbolic 3-space. Ann. Math. 143(1), 51–70 (1996)
Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Combin. Theory Ser. B 92(2), 325–357 (2004)
Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (1999)
Steiner, J.: Systematische Entwicklung der Abhängigkeit geometrischer Gestalten von einander: mit Berücksichtigung der Arbeiten alter und neuer Geometer uber Porismen, Projections-Methoden, Geometrie der Lage, Transversalen, Dualität und Reciprocität, etc, vol. 1. Fincke (1832)
Steinitz, E.: Über isoperimetrische probleme bei konvexen polyedern. J. Reine Angew. Math. 159, 133–143 (1928)
Thom, R.: Sur l’homologie des variétés algébriques réelles. In: Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pp. 255–265. Princeton University Press, Princeton (1965)
Tutte, W.T.: A homotopy theorem for matroids. II. Trans. Am. Math. Soc. 88(1), 161–174 (1958)
Vámos, P.: The missing axiom of matroid theory is lost forever. J. Lond. Math. Soc. 2(3), 403–408 (1978)
Warren, H.E.: Lower bounds for approximation by nonlinear manifolds. Trans. Am. Math. Soc. 133, 167–178 (1968)
Acknowledgements
We would like to thank Xavier Goaoc for bringing the problem of inscribability to our attention. We are also grateful to Jang Soo Kim for his helpful explanation about plane partitions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor in Charge: Csaba D. Tóth
Dedicated to the memory of Eli Goodman.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This study was supported from KAIST Advanced Institute for Science-X (KAI-X).
Rights and permissions
About this article
Cite this article
Dobbins, M.G., Lee, S. Inscribable Order Types. Discrete Comput Geom 72, 704–727 (2024). https://doi.org/10.1007/s00454-023-00591-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-023-00591-0