Skip to main content
Log in

Infinite families of new semifields

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

We construct six new infinite families of finite semifields, all of which are two-dimensional over their left nuclei. We give constructions for both even and odd characteristics when the left nucleus has odd dimension over the center. The characteristic is odd in the one family in which the left nucleus has even dimension over the center. Spread sets of linear maps are used in all the constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Albert: Finite division algebras and finite planes, Proc. Symp. Appl. Math.10 (1960), 53–70.

    Google Scholar 

  2. J. André: Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe, Math. Zeit.60 (1954), 156–186.

    Article  MATH  Google Scholar 

  3. R. D. Baker, J. M. Dover, G. L. Ebert and K. L. Wantz: Perfect Baer subplane partitions and three-dimensional flag-transitive planes, Designs, Codes, Cryptogr.21 (2000), 19–39.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. H. Bruck and R. C. Bose: The construction of translation planes from projective spaces, J. Algebra1 (1964), 85–102.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. H. Bruck and R. C. Bose: Linear representations of projective planes in projective spaces, J. Algebra4 (1966), 117–172.

    Article  MATH  MathSciNet  Google Scholar 

  6. I. Cardinali, O. Polverino and R. Trombetti: Semifield planes of order q4 with kernel \( \mathbb{F}_{q^2 } \) and center \( \mathbb{F}_q \), European J. Combin.27 (2006), 940–961.

    Article  MATH  MathSciNet  Google Scholar 

  7. P. Dembowski: Finite Geometries, Springer Verlag, Berlin, 1968.

    MATH  Google Scholar 

  8. G. L. Ebert, G. Marino, O. Polverino and R. Trombetti: On the multiplication of some semifields of order q6, Finite Fields Appl.15(2) (2009), 160–173.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. L. Ebert, G. Marino, O. Polverino and R. Trombetti: Semifields in Class \( \mathcal{F}_4^{(a)} \), Elect. J. Combin.16(1) (2009), #R53 (20 pp.).

  10. H. Huang and N. L. Johnson: Semifield planes of order 82, Discrete Math.80 (1990), 69–79.

    Article  MATH  MathSciNet  Google Scholar 

  11. N. L. Johnson, V. Jha and M. Biliotti: Handbook of Finite Translation Planes, Pure and Applied Mathematics, Taylor Books, 2007.

  12. N. L. Johnson, G. Marino, O. Polverino and R. Trombetti: Semifields of order q6 with left nucleus \( \mathbb{F}_{q^3 } \) and center \( \mathbb{F}_q \), Finite Fields Appl.14(2) (2008), 456–469.

    Article  MATH  MathSciNet  Google Scholar 

  13. N. L. Johnson, G. Marino, O. Polverino and R. Trombetti: On a generalization of cyclic semifields, J. Algebraic Combin.29(1) (2009), 1–34.

    Article  MATH  MathSciNet  Google Scholar 

  14. W. M. Kantor: Commutative semifields and symplectic spreads, J. Algebra270 (2003), 96–114.

    Article  MATH  MathSciNet  Google Scholar 

  15. W. M. Kantor: Finite semifields, in: Finite Geometries, Groups, and Computation (Proc. of Conf. at Pingree Park, CO, Sept. 2005), pp. 103–114, de Gruyter, Berlin-New York, 2006.

    Google Scholar 

  16. D. E. Knuth: Finite semifields and projective planes, J. Algebra2 (1965), 182–217.

    Article  MATH  MathSciNet  Google Scholar 

  17. D. E. Knuth: A class of projective planes, Trans. AMS115 (1965), 541–549.

    MATH  MathSciNet  Google Scholar 

  18. G. Lunardon: Translation ovoids, J. Geom.76 (2003), 200–215.

    MATH  MathSciNet  Google Scholar 

  19. G. Lunardon: Symplectic spreads and finite semifields, Designs, Codes, Cryptogr.44 (2007), 39–48.

    Article  MATH  MathSciNet  Google Scholar 

  20. G. Marino, O. Polverino and R. Trombetti: On \( \mathbb{F}_q \)-linear sets of PG(3,q3) and semifields, J. Combin. Theory Ser. A114 (2007), 769–788.

    Article  MATH  MathSciNet  Google Scholar 

  21. G. Marino, O. Polverino and R. Trombetti: On semifields of type (q2n,qn,q2, q2,q), n odd; Innov. Incidence Geom.6–7 (2009), 271–290.

    MathSciNet  Google Scholar 

  22. O. Ore: On a special class of polynomials, Trans. Amer. Math. Soc.35 (1933), 559–584.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary L. Ebert.

Additional information

This author acknowledges the support of NSA grant H98230-06-1-0071.

This work was supported by the Research Project of MIUR (Italian Office for University and Research) “Strutture geometriche, combinatoria e loro applicazioni” and by the Research group GNSAGA of INDAM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebert, G.L., Marino, G., Polverino, O. et al. Infinite families of new semifields. Combinatorica 29, 637–663 (2009). https://doi.org/10.1007/s00493-009-2406-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-009-2406-5

Mathematics Subject Classification (2000)