Abstract
We construct six new infinite families of finite semifields, all of which are two-dimensional over their left nuclei. We give constructions for both even and odd characteristics when the left nucleus has odd dimension over the center. The characteristic is odd in the one family in which the left nucleus has even dimension over the center. Spread sets of linear maps are used in all the constructions.
Similar content being viewed by others
References
A. A. Albert: Finite division algebras and finite planes, Proc. Symp. Appl. Math.10 (1960), 53–70.
J. André: Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe, Math. Zeit.60 (1954), 156–186.
R. D. Baker, J. M. Dover, G. L. Ebert and K. L. Wantz: Perfect Baer subplane partitions and three-dimensional flag-transitive planes, Designs, Codes, Cryptogr.21 (2000), 19–39.
R. H. Bruck and R. C. Bose: The construction of translation planes from projective spaces, J. Algebra1 (1964), 85–102.
R. H. Bruck and R. C. Bose: Linear representations of projective planes in projective spaces, J. Algebra4 (1966), 117–172.
I. Cardinali, O. Polverino and R. Trombetti: Semifield planes of order q4 with kernel \( \mathbb{F}_{q^2 } \) and center \( \mathbb{F}_q \), European J. Combin.27 (2006), 940–961.
P. Dembowski: Finite Geometries, Springer Verlag, Berlin, 1968.
G. L. Ebert, G. Marino, O. Polverino and R. Trombetti: On the multiplication of some semifields of order q6, Finite Fields Appl.15(2) (2009), 160–173.
G. L. Ebert, G. Marino, O. Polverino and R. Trombetti: Semifields in Class \( \mathcal{F}_4^{(a)} \), Elect. J. Combin.16(1) (2009), #R53 (20 pp.).
H. Huang and N. L. Johnson: Semifield planes of order 82, Discrete Math.80 (1990), 69–79.
N. L. Johnson, V. Jha and M. Biliotti: Handbook of Finite Translation Planes, Pure and Applied Mathematics, Taylor Books, 2007.
N. L. Johnson, G. Marino, O. Polverino and R. Trombetti: Semifields of order q6 with left nucleus \( \mathbb{F}_{q^3 } \) and center \( \mathbb{F}_q \), Finite Fields Appl.14(2) (2008), 456–469.
N. L. Johnson, G. Marino, O. Polverino and R. Trombetti: On a generalization of cyclic semifields, J. Algebraic Combin.29(1) (2009), 1–34.
W. M. Kantor: Commutative semifields and symplectic spreads, J. Algebra270 (2003), 96–114.
W. M. Kantor: Finite semifields, in: Finite Geometries, Groups, and Computation (Proc. of Conf. at Pingree Park, CO, Sept. 2005), pp. 103–114, de Gruyter, Berlin-New York, 2006.
D. E. Knuth: Finite semifields and projective planes, J. Algebra2 (1965), 182–217.
D. E. Knuth: A class of projective planes, Trans. AMS115 (1965), 541–549.
G. Lunardon: Translation ovoids, J. Geom.76 (2003), 200–215.
G. Lunardon: Symplectic spreads and finite semifields, Designs, Codes, Cryptogr.44 (2007), 39–48.
G. Marino, O. Polverino and R. Trombetti: On \( \mathbb{F}_q \)-linear sets of PG(3,q3) and semifields, J. Combin. Theory Ser. A114 (2007), 769–788.
G. Marino, O. Polverino and R. Trombetti: On semifields of type (q2n,qn,q2, q2,q), n odd; Innov. Incidence Geom.6–7 (2009), 271–290.
O. Ore: On a special class of polynomials, Trans. Amer. Math. Soc.35 (1933), 559–584.
Author information
Authors and Affiliations
Corresponding author
Additional information
This author acknowledges the support of NSA grant H98230-06-1-0071.
This work was supported by the Research Project of MIUR (Italian Office for University and Research) “Strutture geometriche, combinatoria e loro applicazioni” and by the Research group GNSAGA of INDAM.
Rights and permissions
About this article
Cite this article
Ebert, G.L., Marino, G., Polverino, O. et al. Infinite families of new semifields. Combinatorica 29, 637–663 (2009). https://doi.org/10.1007/s00493-009-2406-5
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00493-009-2406-5