Skip to main content
Log in

The edge-disjoint paths problem in Eulerian graphs and 4-edge-connected graphs

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

In the edge-disjoint paths problem, we are given a graph and a set of k pairs of vertices, and we have to decide whether or not the graph has k edge-disjoint paths connecting given pairs of terminals. Robertson and Seymour’s graph minor project gives rise to a polynomial time algorithm for this problem for any fixed k, but their proof of the correctness needs the whole Graph Minor project. We give a faster algorithm and a much simpler proof of the correctness for the edge-disjoint paths problem. Our results can be summarized as follows:

  1. 1.

    If an input graph is either 4-edge-connected or Eulerian, then our algorithm only needs to look for the following three simple reductions: (i) Excluding vertices of high degree. (ii) Excluding ≤3-edge-cuts. (iii) Excluding large clique minors.

  2. 2.

    When an input graph is either 4-edge-connected or Eulerian, the number of terminals k is allowed to be a non-trivially super constant number, up to k=O((log log logn)½−ε) for any ε > 0. In addition, if an input graph is either 4-edge-connected planar or Eulerian planar, k is allowed to be O((logn ½−ε) for any ε > 0.

  3. 3.

    We also give our own algorithm for the edge-disjoint paths problem in general graphs. We basically follow the Robertson-Seymour’s algorithm, but we cut half of the proof of the correctness for their algorithm. In addition, our algorithm is faster than Robertson and Seymour’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Andrews, J. Chuzhoy, S. Khanna and L. Zhang: Hardness of the undirected edge-disjoint paths problem with congestion, Proc. 46th IEEE Symposium on Foundations of Computer Science (FOCS), 2005, 226–244.

    Chapter  Google Scholar 

  2. S. Arnborg and A. Proskurowski: Linear time algorithms for NP-hard problems restricted to partial k-trees, Discrete Appl. Math. 23 (1989), 11–24.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. L. Bodlaender: A linear-time algorithm for finding tree-decomposition of small treewidth, SIAM J. Comput. 25 (1996), 1305–1317.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Chekuri, S. Khanna and B. Shepherd: Edge-disjoint paths in planar graphs, Proc. 45th IEEE Symposium on Foundations of Computer Science (FOCS), 2004, 71–80.

    Chapter  Google Scholar 

  5. C. Chekuri, S. Khanna and B. Shepherd: Edge-disjoint paths in planar graphs with constant congestion, SIAM J. Comput. 39 (2009), 281–301.

    Article  MathSciNet  MATH  Google Scholar 

  6. E.D. Demaine and M. Hajiaghayi: Fast algorithms for hard graph problems: Bidimensionality, minors, and local treewidth, Proc. 12th Internat. Symp. on Graph Drawing, Lecture Notes in Computer Science 3383, Springer, 2004, 517–533.

    Article  Google Scholar 

  7. E.D. Demaine and M. Hajiaghayi: Linearity of grid minors in treewidth with applications through bidimensionality, Combinatorica 28 (2008), 19–36.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Diestel, K.Y. Gorbunov, T.R. Jensen and C. Thomassen: Highly connected sets and the excluded grid theorem, J. Combin. Theory Ser. B 75 (1999), 61–73.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Frank: Packing paths, cuts and circuits- a survey, in: Paths, Flows and VLSI-Layout, B. Korte, L. Lovász, H.J. Promel and A. Schrijver (Eds.), Springer-Verlag, Berlin, 1990, 49–100.

    Google Scholar 

  10. V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd and M. Yannakakis: Near-optimal hardness results and approximation algorithms for edge-disjoint paths and related problems, J. Comp. Styst. Sciences 67 (2003), 473–496.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Halin: S-functions for graphs, J. Geometry 8 (1976), 171–176.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Johnson: The many faces of polynomial time, in: The NP-completeness column: An ongoing guide, J. Algorithms 8 (1987), 285–303.

    MATH  Google Scholar 

  13. R. M. Karp: On the computational complexity of combinatorial problems, Networks 5 (1975), 45–68.

    MathSciNet  MATH  Google Scholar 

  14. K. Kawarabayashi and Y. Kobayashi: The edge disjoint paths problem in Eulerian graphs and 4-edge-connected graphs, Proc. 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2010, 345–353.

    Chapter  Google Scholar 

  15. K. Kawarabayashi, Y. Kobayashi and B. Reed: The disjoint paths problem in quadratic time, J. Combin. Theory Ser. B 102 (2012), 424–435.

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Kawarabayashi and P. Wollan: A shorter proof of the graph minor algorithm the unique linkage theorem, Proc. 42nd ACM Symposium on Theory of Computing (STOC), 2010, 687–694.

    Chapter  Google Scholar 

  17. J. Kleinberg: An approximation algorithm for the disjoint paths problem in evendegree planar graphs, Proc. 46th IEEE Symposium on Foundations of Computer Science (FOCS), 2005, 627–636.

    Chapter  Google Scholar 

  18. J. Kleinberg and É. Tardos: Disjoint paths in densely embedded graphs, Proc. 36th IEEE Symposium on Foundations of Computer Science (FOCS), 1995, 52–61.

    Google Scholar 

  19. J. Kleinberg and É. Tardos: Approximations for the disjoint paths problem in high-diameter planar networks, Proc. 27th ACM Symposium on Theory of Computing (STOC), 1995, 26–35.

    Google Scholar 

  20. M. R. Kramer and J. van Leeuwen: The complexity of wire-routing and fingding minimum area layouts for arbitrary VLSI circuits, Adv. Comput. Res. 2 (1984), 129–146.

    Google Scholar 

  21. M. Middendorf and F. Pfeiffer: On the complexity of the disjoint paths problem, Combinatorica 13 (1993), 97–107.

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Nagamochi and T. Ibaraki: A linear-time algorithm for finding a sparse k-connected spanning subgraph of a k-connected graph, Algorithmica 7 (1992), 583–596.

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Nishizeki, J. Vygen and X. Zhou: The edge-disjoint paths problem is NPcomplete for series-parallel graphs, Discrete Appl. Math. 115 (2001), 177–186.

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Okamura and P. D. Seymour: Multicommodity ows in planar graphs. J. Combin. Theory Ser. B 31 (1981), 75–81.

    Article  MathSciNet  MATH  Google Scholar 

  25. L. Perkovic and B. Reed: An improved algorithm for finding tree decompositions of small width, International Journal on the Foundations of Computing Science 11 (2000), 81–85.

    Article  MathSciNet  Google Scholar 

  26. B. Reed: Finding approximate separators and computing tree width quickly, Proc. 24th ACM Symposium on Theory of Computing (STOC), 1992, 221–228.

    Google Scholar 

  27. B. Reed: Tree width and tangles: a new connectivity measure and some applications, in: Surveys in Combinatorics, London Math. Soc. Lecture Note Ser. 241, Cambridge Univ. Press, Cambridge, 1997, 87–162.

    Google Scholar 

  28. N. Robertson and P. D. Seymour: Graph minors. II. Algorithmic aspects of treewidth, J. Algorithms 7 (1986), 309–322.

    Article  MathSciNet  MATH  Google Scholar 

  29. N. Robertson and P. D. Seymour: Graph minors. V. Excluding a planar graph, J. Combin. Theory Ser. B 41 (1986), 92–114.

    Article  MathSciNet  MATH  Google Scholar 

  30. N. Robertson and P. D. Seymour: An outline of a disjoint paths algorithm, in: Paths, Flows, and VLSI-Layout, B. Korte, L. Lovász, H.J. Prömel, and A. Schrijver (Eds.), Springer-Verlag, Berlin, 1990, 267–292.

    Google Scholar 

  31. N. Robertson and P. D. Seymour: Graph minors. XIII. The disjoint paths problem, J. Combin. Theory Ser. B 63 (1995), 65–110.

    Article  MathSciNet  MATH  Google Scholar 

  32. N. Robertson and P. D. Seymour: Graph minors. XXI. Graphs with unique linkages, J. Combin. Theory Ser. B 99 (2009), 583–616.

    Article  MathSciNet  MATH  Google Scholar 

  33. N. Robertson and P. D. Seymour: Graph minors. XXII. Irrelevant vertices in linkage problems, J. Combin. Theory Ser. B 102 (2012), 530–563.

    Article  MathSciNet  MATH  Google Scholar 

  34. N. Robertson, P. D. Seymour and R. Thomas: Quickly excluding a planar graph, J. Combin. Theory Ser. B 62 (1994), 323–348.

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Schrijver: Combinatorial Optimization: Polyhedra and Efficiency, Springer-Verlag, 2003.

    Google Scholar 

  36. P. D. Seymour: Disjoint paths in graphs, Discrete Math. 29 (1980), 293–309.

    Article  MathSciNet  MATH  Google Scholar 

  37. P. D. Seymour: On odd cuts and plane multicommodityows, Proceedings of the London Mathematical Society 42 (1981), 178–192.

    Article  MathSciNet  MATH  Google Scholar 

  38. C. Thomassen: 2-linked graph, European Journal of Combinatorics 1 (1980), 371–378.

    Article  MathSciNet  MATH  Google Scholar 

  39. C. Thomassen: A simpler proof of the excluded minor theorem for higher surfaces, J. Combin. Theory Ser. B 70 (1997), 306–311.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Kobayashi.

Additional information

An extended abstract of this paper appears in SODA 2010 [14].

Research partly supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research, by C & C Foundation, by Kayamori Foundation and by Inoue Research Award for Young Scientists.

JST, ERATO, Kawarabayashi Large Graph Project, Japan.

Supported by the Grant-in-Aid for Scientific Research, MEXT, Japan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawarabayashi, Ki., Kobayashi, Y. The edge-disjoint paths problem in Eulerian graphs and 4-edge-connected graphs. Combinatorica 35, 477–495 (2015). https://doi.org/10.1007/s00493-014-2828-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-014-2828-6

Mathematics Subject Classification (2000)

Navigation