Abstract
We prove that the set of long cycles has the edge-Erdős-Pósa property: for every fixed integer ℓ ≥ 3 and every k ∈ ℕ, every graph G either contains k edge-disjoint cycles of length at least ℓ (long cycles) or an edge set X of size O(k2 logk+kℓ) such that G—X does not contain any long cycle. This answers a question of Birmelé, Bondy, and Reed (Combinatorica 27 (2007), 135-145).
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
E. Birmelé, J. A. Bondy and B. Reed: The Erdős-Pósa property for long circuits, Combinatorica 27 (2007), 135–145.
H. Bruhn, F. Joos and O. Schaudt: Long cycles through prescribed vertices have the Erdős-Pósa property, J. Graph Theory 87 (2018), 275–284.
D. Conlon and J. Fox: Graph removal lemmas, Surveys in combinatorics 2013, London Math. Soc. Lecture Note Ser., vol. 409, Cambridge Univ. Press, Cambridge, 2013, 1–49.
I. J. Dejter and V. Neumann-Lara: Unboundedness for generalized odd cyclic transversality, Colloq. Math. Soc. János Bolyai 52 (1987), 195–203.
R. Diestel: Graph theory, fourth ed., Springer, Heidelberg, 2010.
P. Erdős and L. Pósa: On the maximal number of disjoint circuits of a graph, Publ. Math. Debrecen 9 (1962), 3–12.
S. Fiorini and A. Herinckx: A tighter Erdős–Pósa function for long cycles, J. Graph Theory 77 (2014), 111–116.
T. Huynh, F. Joos and P. Wollan: A unified Erdős-Pósa theorem for constrained cycles, to appear in Combinatorica.
N. Kakimura, K. Kawarabayashi and D. Marx: Packing cycles through prescribed vertices, J. Combin. Theory (Series B) 101 (2011), 378–381.
K. Kawarabayashi and Y. Kobayashi: Edge-disjoint odd cycles in 4-edge-connected graphs, J. Combin. Theory (Series B) 119 (2016), 12–27.
C.-H. Liu: Packing and Covering immersions in 4-Edge-Connected Graphs, arXiv:1505.00867 (2015).
F. Mousset, A. Noever, N. Škorić and F. Weissenberger: A tight Erdős-Pósa function for long cycles, J. Combin. Theory (Series B), 125 (2017), 21–32.
M. Pontecorvi and P. Wollan: Disjoint cycles intersecting a set of vertices, J. Combin. Theory (Series B) 102 (2012), 1134–1141.
J.-F. Raymond, I. Sau and D. M. Thilikos: An edge variant of the Erdős–Pósa property, Discrete Math. 339 (2016), 2027–2035.
J.-F. Raymond and D. Thilikos: Recent techniques and results on the Erdős–Pósa property, to appear in Disc. App. Math.
N. Robertson and P. Seymour: Graph minors. V. Excluding a planar graph, J. Combin. Theory (Series B) 41 (1986), 92–114.
K. F. Roth: On certain sets of integers, J. London Math. Soc. 28 (1953), 104–109.
I. Z. Ruzsa and E. Szemerédi: Triple systems with no six points carrying three triangles, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, Colloq. Math. Soc. János Bolyai, vol. 18, North-Holland, Amsterdam-New York, 1978, pp. 939–945.
M. Simonovits: A new proof and generalizations of a theorem of Erdős and Pósa on graphs without k+1 independent circuits, Acta Math. Acad. Sci. Hungar. 18 (1967), 191–206.
C. Thomassen: On the presence of disjoint subgraphs of a specified type, J. Graph Theory 12 (1988), 101–111.
Author information
Authors and Affiliations
Corresponding author
Additional information
The research was also supported by the EPSRC, grant no. EP/M009408/1.
Rights and permissions
About this article
Cite this article
Bruhn, H., Heinlein, M. & Joos, F. Long Cycles have the Edge-Erdős-Pósa Property. Combinatorica 39, 1–36 (2019). https://doi.org/10.1007/s00493-017-3669-x
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00493-017-3669-x