Skip to main content
Log in

On the embedding of state space realizations

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

In this paper, the generality of the particular model reduction method, known as the projection of state space realization, is investigated. Given two transfer functions, one wants to find the necessary and sufficient conditions for the embedding of a state-space realization of the transfer function of smaller McMillan degree into a state-space realization of the transfer function of larger McMillan degree. Two approaches are considered, both in the MIMO case. First, when the difference of the McMillan degree between the transfer functions is equal to one and there is no common pole, necessary and sufficient conditions are provided. Then, the generic case is considered using a pencil approach. Finally, it is shown that the condition of embedding is related to the eigen structure of a pencil that appears in the framework of tangential interpolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antoulas AC (2005) Approximation of large-scale dynamical systems. Society for Industrial and Applied Mathematics (SIAM). Philadelphia, xxvi, 479 p

  2. Antoulas AC, Anderson BDO (1989) On the problem of stable rational interpolation. Linear Algebra Appl 122/123/124:301–329

    Article  MathSciNet  Google Scholar 

  3. Chahlaoui Y, Gallivan K, Van Dooren P (2004) The H norm calculation for large sparse systems. In: Proceedings of 16th symposium on the mathematical theory of networks and systems, Katholieke Universiteit Leuven, Belgium

  4. Freund RW (2000) Krylov-subspace methods for reduced-order modeling in circuit simulation. J Comput Appl Math 123(1–2):395–421

    Article  MATH  MathSciNet  Google Scholar 

  5. Gallivan K, Grimme E, Van Dooren P (1994) Asymptotic waveform evaluation via a Lanczos method. Appl Math Lett 7(5):75–80

    Article  MATH  MathSciNet  Google Scholar 

  6. Gallivan K, Vandendorpe A, Van Dooren P (2003) Model reduction via truncation: an interpolation point of view. Linear Algebra Appl 375:115–134

    Article  MATH  MathSciNet  Google Scholar 

  7. Gallivan K, Vandendorpe A., Van Dooren P (2004) Model reduction of MIMO systems via tangential interpolation. SIAM J Matrix Anal Appl 26(2):328–349

    Article  MATH  MathSciNet  Google Scholar 

  8. Gantmacher FR (1959) Theory of matrices, vol 2. Chelsea Publishing Company, Chelsea, New York

  9. Glover KD (1984) All optimal Hankel-norm approximation of linear multivariable systems and their L -error bounds. Int J Control 39(6):1115–1193

    MATH  MathSciNet  Google Scholar 

  10. Grimme EJ (1997) Krylov projection methods for model reduction. PhD thesis, Department of Electrical Engineering, University of Illinois at Urbana-Champaign

  11. Grimme EJ, Sorensen DC, Van Dooren P (1996) Model reduction of state space systems via an implicitly restarted Lanczos method. Numer Algorithms 12(1–2):1–31

    Article  MATH  MathSciNet  Google Scholar 

  12. Gugercin S, Antoulas AC (2004) A survey of model reduction by balanced truncation and some new results. Int J Control 77(8):748–766

    Article  MATH  MathSciNet  Google Scholar 

  13. Halevi Y (2002) On model order reduction via projection. In: 15th IFAC World Congress on automatic control, July 2002, pp 6

  14. Halevi Y (2004) Can any reduced-order model be obtained by projection? In: American control conference. Boston, MA, pp 113–118

  15. Jaimoukha I, Kasenally E (1997) Implicitly restarted Krylov subspace methods for stable partial realizations. SIAM J Matrix Anal Appl 18(3):633–652

    Article  MATH  MathSciNet  Google Scholar 

  16. Kågström B, Van Dooren P (1992) A generalized state-space approach for the additive decomposition of a transfer matrix. J Numer Linear Algebra Appl 1(2):165–181

    MathSciNet  Google Scholar 

  17. Kailath T (1980) Linear systems. Information and System Sciences. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  18. Loiseau JJ, Mondié S, Zaballa I, Zagalak P (1998) Assigning the Kronecker invariants of a matrix pencil by row or column completions. Linear Algebra Appl 278(1–3):327–336

    Article  MATH  MathSciNet  Google Scholar 

  19. Marques de Sá E (1979) Imbedding conditions for λ-matrices. Linear Algebra Appl 24:33–50

    Article  MathSciNet  Google Scholar 

  20. Obinata G, Anderson BDO (2001) Model reduction for control system design. In: Communications and control engineering series. Springer, London

  21. Rosenbrock HH (1970) State-space and multivariable theory. John Wiley & Sons, [Wiley Interscience Division], New York

  22. Sorensen DC, Antoulas AC (2002) The Sylvester equation and approximate balanced reduction. Linear Algebra Appl 351–352:671–700

    Article  MathSciNet  Google Scholar 

  23. Thompson RC (1979) Interlacing inequalities for invariant factors. Linear Algebra Appl 24:1–31

    Article  MATH  MathSciNet  Google Scholar 

  24. Van Dooren P (1981) The generalized eigenstructure problem in linear system theory. IEEE Trans Autom Control 26:111–129

    Article  MATH  MathSciNet  Google Scholar 

  25. Vandendorpe A (2004) Model reduction of linear systems, an interpolation point of view. PhD thesis, Université catholique de Louvain

  26. Vandendorpe A, Van Dooren P (2004) Projection of State-space realizations. In: Unsolved problems in mathematical systems and Control theory, vol. 2. Princeton University Press, Princeton, pp 58–64

  27. Vandendorpe A, Van Dooren P (2005) Model reduction via projection of generalized state space systems. In: IEEE Conference on decesion and control, Spain, pp 6557–6560

  28. Varga A (1995) Enhanced modal approach for model reduction. Math Model Syst 1(2):91–105

    MATH  Google Scholar 

  29. Verhaegen MH, van Dooren P (1986) A reduced order observer for descriptor systems. Syst Control Lett 8:29–37

    Article  MATH  Google Scholar 

  30. Zhou K, Doyle JC, Glover K (1996) Robust and optimal control. Prentice-Hall, Inc, Upper Saddle River

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Genin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genin, Y., Vandendorpe, A. On the embedding of state space realizations. Math. Control Signals Syst. 19, 123–149 (2007). https://doi.org/10.1007/s00498-006-0011-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-006-0011-3

Keywords

Navigation