Skip to main content
Log in

Higher order geodesics in Lie groups

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

For all n > 2, we study nth order generalisations of Riemannian cubics, which are second-order variational curves used for interpolation in semi-Riemannian manifolds M. After finding two scalar constants of motion, one for all M, the other when M is locally symmetric, we take M to be a Lie group G with bi-invariant semi-Riemannian metric. The Euler–Lagrange equation is reduced to a system consisting of a linking equation and an equation in the Lie algebra. A Lax pair form of the second equation is found, as is an additional vector constant of motion, and a duality theory, based on the invariance of the Euler–Lagrange equation under group inversion, is developed. When G is semisimple, these results allow the linking equation to be solved by quadrature using methods of two recent papers; the solution is presented in the case of the rotation group SO(3), which is important in rigid body motion planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babelon O, Bernard D, Talon M (2003) Introduction to classical integrable systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  2. Belta C, Kumar V (2002) On the computation of rigid body motion. Electron J Comput Kinemat 1

  3. Belta C, Kumar V (2002) Euclidean metrics for motion generation on SE(3). J Mech Eng Sci C 216:47–60

    Article  Google Scholar 

  4. Camarinha M (1996) The geometry of cubic polynomials on Riemannian manifolds. PhD Thesis, University of Coimbra, Portugal

  5. Camarinha M, Silva Leite F, Crouch P (1995) Splines of class C k on non-Euclidean spaces. IMA J Math Control Inform 12:399–410

    Article  MATH  MathSciNet  Google Scholar 

  6. Camarinha M, Silva Leite F, Crouch P (2001) On the geometry of Riemannian cubic polynomials. Diff Geom Appl 15:107–135

    Article  MATH  MathSciNet  Google Scholar 

  7. Crouch P, Kun G, Silva Leite F (1999) The de Casteljau algorithm on Lie groups and spheres. J Dyn Control Syst 5:397–429

    Article  MATH  MathSciNet  Google Scholar 

  8. Crouch P, Silva Leite F (1991) Geometry and the dynamic interpolation problem. Proc Amer Control Conf, Boston, pp 1131–1136

  9. Crouch P, Silva Leite F (1995) The dynamic interpolation problem: on Riemannian manifolds, Lie groups and symmetric spaces. J Dyn Control Syst 1:177–202

    Article  MATH  MathSciNet  Google Scholar 

  10. do Carmo M (1992) Riemannian geometry. Birkhäuser, Boston

    MATH  Google Scholar 

  11. Gabriel S, Kajiya J (1985) Spline interpolation in curved space. State of the art in image synthesis, SIGGRAPH ‘85 course notes. ACM Press, New York, pp 1–14

  12. Ge Q, Ravani B (1994) Geometric construction of Bézier motions. Trans ASME J Mech Des 116:749–755

    Article  Google Scholar 

  13. Giambo R, Giannoni F, Piccione P (2002) An analytical theory for Riemannian cubic polynomials. IMA J Math Control Inform 19:445–460

    Article  MATH  MathSciNet  Google Scholar 

  14. Giambo R, Giannoni F, Piccione P (2004) Optimal control on Riemannian manifolds by interpolation. Math Control Signals Syst 16:278–296

    Article  MATH  MathSciNet  Google Scholar 

  15. Hussein I, Bloch A (2004) Dynamic interpolation on Riemannian manifolds: an application to interferometric imaging. Proc Amer Control Conf, Boston, pp 413–418

  16. Jacobson N (1962) Lie algebras. Interscience, New York

    MATH  Google Scholar 

  17. Jurdjevic V (1997) Geometric control theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  18. Krakowski K (2002) Geometrical methods of inference. PhD Thesis, University of Western Australia

  19. Krakowski K (2005) Envelopes of splines in the projective plane. IMA J Math Control Inform 22:171–180

    Article  MATH  MathSciNet  Google Scholar 

  20. Milnor J (1963) Morse theory. Princeton University Press, Princeton

    MATH  Google Scholar 

  21. Noakes L (2003) Null cubics and Lie quadratics. J Math Phys 44:1436–1448

    Article  MATH  MathSciNet  Google Scholar 

  22. Noakes L (2004) Non-null Lie quadratics in E 3. J Math Phys 45:4334–4351

    Article  MATH  MathSciNet  Google Scholar 

  23. Noakes L (2006) Duality and Riemannian cubics. Adv Comput Math 25:195–209

    Article  MATH  MathSciNet  Google Scholar 

  24. Noakes L (2006) Lax constraints in semisimple Lie groups. Q J Math 57:527–538

    Article  MATH  MathSciNet  Google Scholar 

  25. Noakes L, Heinzinger G, Paden B (1989) Cubic splines on curved spaces. IMA J Math Control Inform 6:465–473

    Article  MATH  MathSciNet  Google Scholar 

  26. Noakes L, Popiel T (2005) Quadratures and cubics in SO(3) and SO(1,2). IMA J Math Control Inform 23:463–473

    Article  MathSciNet  Google Scholar 

  27. Park F, Ravani B (1995) Bézier curves on Riemannian manifolds and Lie groups with kinematic applications. Trans ASME J Mech Des 117:36–40

    Google Scholar 

  28. Park F, Ravani B (1997) Smooth invariant interpolation of rotations. ACM Trans Graph 16:277–295

    Article  Google Scholar 

  29. Popiel T, Noakes L (2006) C 2 spherical Bézier splines. Comput Aided Geom Des 23:261–275

    Article  MATH  MathSciNet  Google Scholar 

  30. Shoemake K (1985) Animating rotations with quaternion curves. ACM SIGGRAPH Comput Graph 19:245–254

    Article  Google Scholar 

  31. Silva Leite F, Camarinha M, Crouch P (1995) Two higher order variational problems on Riemannian manifolds and the interpolation problem. Proceedings of the 3rd European control conference, Rome, pp 3269–3274

  32. Silva Leite F, Camarinha M, Crouch P (2000) Elastic curves as solutions of sub-Riemannian control problems. Math Control Signals Syst 13:140–155

    Article  MATH  MathSciNet  Google Scholar 

  33. Varadarajan V (1984) Lie groups, Lie algebras, and their representations. Springer, New York

    MATH  Google Scholar 

  34. Žefran M, Kumar V (1998) Interpolation schemes for rigid body motions. Comput Aided Des 30:179–189

    Article  MATH  Google Scholar 

  35. Žefran M, Kumar V, Croke C (1996) Choice of Riemannian metrics for rigid body kinematics. Proc ASME 24th Biennial Mechanisms Conf, Irvine, California

  36. Žefran M, Kumar V, Croke C (1998) On the generation of smooth three-dimensional rigid body motions. IEEE Trans Robot Autom 14:576–589

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Popiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popiel, T. Higher order geodesics in Lie groups. Math. Control Signals Syst. 19, 235–253 (2007). https://doi.org/10.1007/s00498-007-0012-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-007-0012-x

Keywords

Navigation