Skip to main content
Log in

On stability of a class of positive linear functional difference equations

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We first give a sufficient condition for positivity of the solution semigroup of linear functional difference equations. Then, we obtain a Perron–Frobenius theorem for positive linear functional difference equations. Next, we offer a new explicit criterion for exponential stability of a wide class of positive equations. Finally, we study stability radii of positive linear functional difference equations. It is proved that complex, real and positive stability radius of positive equations under structured perturbations (or affine perturbations) coincide and can be computed by explicit formulae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aeyels A and Leenheer PD (2002). Extension of the Perron–Frobenius theorem to homogeneous systems. SIAM J Control Optim 41: 563–582

    Article  MATH  MathSciNet  Google Scholar 

  2. Berman A and Plemmons RJ (1979). Nonnegative matrices in mathematical sciences. Academic, New York

    MATH  Google Scholar 

  3. Cruz MA and Hale JK (1970). Stability of functional differential equations of neutral type. J Differ Eq 7: 334–355

    Article  MATH  MathSciNet  Google Scholar 

  4. Farina L and Rinaldi S (2000). Positive linear systems: theory and applications. Wiley, New York

    MATH  Google Scholar 

  5. James G and Rumchev VG (2001). Stability of positive linear discrete-time systems. Systems Sci 30: 51–67

    MathSciNet  Google Scholar 

  6. Gaubert S and Gunawardena J (2004). The Perron–Frobenius theorem for homogeneous, monotone functions. Trans Am Math Soc 356: 4931–4950

    Article  MATH  MathSciNet  Google Scholar 

  7. Haddad WM, Chellaboina V (2004) Stability and dissipativity theory for nonnegative and compartmental dynamical systems with time delay. Advances in Time-delay Systems. Lecture Notes Computer Science Engineering 38. Springer, Berlin, pp 421–435

  8. Haddad WM and Chellaboina V (2005). Stability and dissipativity theory for nonnegative dynamical systems: a unified analysis framework for biological and physiological systems. Nonlinear Anal Real World Appl 6: 35–65

    Article  MATH  MathSciNet  Google Scholar 

  9. Hale J and MartJnez-Amores P (1976/77). Stability in neutral equations. Nonlinear Anal 1: 161–173

    Article  MathSciNet  Google Scholar 

  10. Hale J (1977). Theory of functional differential equations. Academic, New York

    MATH  Google Scholar 

  11. Hale J and Verduyn Lunel SM (1993). Introduction to Functional Differential Equations. Springer-Verlag, New York

    MATH  Google Scholar 

  12. Hale J and Verduyn Lunel SM (1993). Strong stabilization of neutral functional differential equations. Special issue on analysis and design of delay and propagation systems. IMA J Math Control Inform 19: 5–23

    Article  MathSciNet  Google Scholar 

  13. Henry D (1974). Linear autonomous neutral functional differential equations. J Differ Eq 15: 106–128

    Article  MATH  MathSciNet  Google Scholar 

  14. Hinrichsen D and Pritchard AJ (1986). Stability radius for structured perturbations and the algebraic Riccati equation. Systems Control Lett 8: 105–113

    Article  MATH  MathSciNet  Google Scholar 

  15. Hinrichsen D, Pritchard AJ (1990) Real and complex stability radii: a survey. In Hinrichsen D, Mårtensson B (eds) Control of uncertain systems, vol 6 of Progress in System and Control Theory. Birkhäuser, Basel, pp 119–162

  16. Hinrichsen D and Son NK (1998). Stability radii of positive discrete-time systems under affine parameter perturbations. Int J Robust Nonlinear Control 8: 1169–1188

    Article  MATH  MathSciNet  Google Scholar 

  17. Hinrichsen D and Son NK (1998). μ–analysis and robust stability of positive linear systems. Appl Math Comput Sci 8: 253–268

    MATH  MathSciNet  Google Scholar 

  18. Hinrichsen D, Son NK and Ngoc PHA (2003). Stability radii of positive higher order difference systems. Systems Control Lett 49: 377–388

    Article  MATH  MathSciNet  Google Scholar 

  19. Horn RA and Johnson CR (1993). Matrix analysis. Cambridge University Press, Cambridge

    Google Scholar 

  20. Kloeden PE and Rubinov AM (2000). A generalization of Perron–Frobenius theorem. Nonlinear Anal 41: 97–115

    Article  MathSciNet  Google Scholar 

  21. Krein MJ and Rutman MA (1948). Linear operators leaving invariant a cone in a Banach space. Am Math Soc Transl 10: 199–325

    Google Scholar 

  22. Luenberger DG (1979). Introduction to dynamic systems, theory, models and applications. Wiley, New York

    MATH  Google Scholar 

  23. Naito T, Shin JS, Murakami S, Ngoc PHA (2006) On stability and robust stability of positive linear Volterra equations (submitted)

  24. Naito T, Shin JS, Murakami S, Ngoc PHA (2006) Characterizations of positive linear Volterra integro-differential systems. Integral Equations and Operator Theory (2007) (in press)

  25. Naito T, Shin JS, Murakami S, Ngoc PHA (2007) Characterizations of positive linear Volterra integral equations with nonnegative kernels. J Math Anal Appl. doi:10.1016/j.jmaa.2007.01.070

  26. Ngoc PHA and Son NK (2003). Stability radii of positive linear difference equations under affine parameter perturbations. Appl Math Comput 134: 577–594

    Article  MATH  MathSciNet  Google Scholar 

  27. Ngoc PHA and Son NK (2004). Stability radii of linear systems under multi-perturbations. Numer Funct Anal Optim 25: 221–238

    Article  MATH  MathSciNet  Google Scholar 

  28. Ngoc PHA, Lee BS and Son NK (2004). Perron Frobenius theorem for positive polynomial matrices. Vietnam J Math 32: 475–481

    MATH  MathSciNet  Google Scholar 

  29. Ngoc PHA (2005). Strong stability radii of positive linear time-delay systems. Int J Robust Nonlinear Control 15: 459–472

    Article  MathSciNet  Google Scholar 

  30. Ngoc PHA and Son NK (2005). Stability radii of positive linear functional differential equations under multi perturbations. SIAM J Control Optim 43: 2278–2295

    Article  MATH  MathSciNet  Google Scholar 

  31. Ngoc PHA and Lee BS (2006). A characterization of spectral abscissa and Perron–Frobenius theorem of postive linear functional differntial equations. IMA J Math Control Inform 23: 259–268

    Article  MATH  MathSciNet  Google Scholar 

  32. Ngoc PHA (2006). A Perron–Frobenius theorem for a class of positive quasi-polynomial matrices. Appl Math Lett 19: 747–751

    Article  MATH  MathSciNet  Google Scholar 

  33. Ngoc PHA, Naito T and Shin JS (2006). Characterizations of postive linear functional differential equations. Funkcialaj Ekvacioj 50: 1–17

    Article  MathSciNet  Google Scholar 

  34. Ngoc PHA, Lee BS and Son NK (2004). Perron–Frobenius theorem for positive polynomial matrices. Vietnam J Math 32: 475–481

    MATH  MathSciNet  Google Scholar 

  35. Ngoc PHA (2005). Strong stability radii of positive linear time-delay systems. Int J Robust Nonlinear Control 15: 459–472

    Article  MathSciNet  Google Scholar 

  36. Pazy A (1983). Semigroups of linear operators and applications to partial differential equations. Springer, Berlin

    MATH  Google Scholar 

  37. Qiu L, Bernhardsson B, Rantzer A, Davison EJ, Young PM and Doyle JC (1995). A formula for computation of the real stability radius. Automatica 31: 879–890

    Article  MATH  MathSciNet  Google Scholar 

  38. Shafai B, Chen J and Kothandaraman M (1997). Explicit formulas for stability radii of nonnegative and Metzlerian matrices. IEEE Trans Autom Control 42: 265–269

    Article  MATH  MathSciNet  Google Scholar 

  39. Son NK and Hinrichsen D (1996). Robust stability of positive continuous time systems. Numer Funct Anal Optim 17: 649–659

    Article  MATH  MathSciNet  Google Scholar 

  40. Son NK and Ngoc PHA (1999). Robust stability of positive linear time delay systems under affine parameter perturbations. Acta Math Vietnamica 24: 353–372

    MATH  MathSciNet  Google Scholar 

  41. Son NK and Ngoc PHA (2001). Robust stability of linear functional differential equations. Adv Stud Contemp Math 3: 43–59

    MATH  Google Scholar 

  42. Rump SM (1997). Theorems of Perron–Frobenius type for matrices without sign restrictions. Linear Algebra Appl 266: 1–42

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Huu Anh Ngoc.

Additional information

Pham Huu Anh Ngoc and Toshiki Naito are supported by the Japan Society for Promotion of Science (JSPS) ID No. P 05049.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngoc, P.H.A., Naito, T. & Shin, J.S. On stability of a class of positive linear functional difference equations. Math. Control Signals Syst. 19, 361–382 (2007). https://doi.org/10.1007/s00498-007-0018-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-007-0018-4

Keywords