Skip to main content

Advertisement

Log in

Feedback invariance of SISO infinite-dimensional systems

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We consider a linear single-input single-output system on a Hilbert space X, with infinitesimal generator A, bounded control element b, and bounded observation element c. We address the problem of finding the largest feedback invariant subspace of X that is in the space c perpendicular to c. If b is not in c , we show this subspace is c . If b is in c , a number of situations may occur, depending on the relationship between b and c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Byrnes C, Lauko I, Gilliam D, Shubov V (1998) Zero dynamics for relative degree one SISO distributed parameter systems. In: 37th IEEE conference on decision and control, vol 3, pp 2390–2391

  2. Curtain RF (1986). Invariance concepts in infinite dimensions. SIAM J Control Optim 24(5): 1009–1031

    Article  MATH  MathSciNet  Google Scholar 

  3. Curtain RF (1986). Disturbance decoupling by measurement feedback with stability for infinite-dimensional systems. Int J Control 43(6): 1723–1743

    Article  MATH  MathSciNet  Google Scholar 

  4. Curtain RF and Zwart H (1995). An Introduction to infinite-dimensional linear systems theory. Springer, Heidelberg

    MATH  Google Scholar 

  5. Isidori A (2001). Nonlinear control systems. Springer, Heidelberg

    Google Scholar 

  6. Kato T (1980). Perturbation theory for linear operators. Springer, Heidelberg

    MATH  Google Scholar 

  7. Lasiecka I, Triggiani R (1985) Finite rank, relatively bounded perturbations of semigroup generators, Part I: Well-posedness and boundary feedback hyperbolic dynamics. Annali Scuola Normale Superiore-Pisa, Classe di Scienze, Serie IV, Vol. XII, No. 4

  8. Morris KA (2001). Introduction to feedback control. Academic, New York

    MATH  Google Scholar 

  9. Neubrander F (1988). Integrated semigroups and their applications to the abstract Cauchy Problem. Pacific J Math 135(1): 111–155

    MATH  MathSciNet  Google Scholar 

  10. Otsuka N and Hinata H (2000). Generalized Invariant Subspaces for Infinite-Dimensional Systems. J Math Anal Appl 252: 325–341

    Article  MATH  MathSciNet  Google Scholar 

  11. Otsuka N and Inaba H (1990). Decoupling by state feedback in infinite-dimensional systems. IMA J Math Control Inf 7: 125–141

    Article  MATH  MathSciNet  Google Scholar 

  12. Pandolfi L (1986). Disturbance decoupling and invariant subspaces for delay systems. Appl Math Optim 14: 55–72

    Article  MATH  MathSciNet  Google Scholar 

  13. Pazy A (1983). Semigroups of linear operators and applications to partial differential equations. Springer, New York

    MATH  Google Scholar 

  14. Salamon D (1984). Control and observation of neutral systems. Pittman Advanced Publishing Program, Boston

    MATH  Google Scholar 

  15. Wonham WM (1985). Linear multivariable control: a geometric approach. Springer, Heidelberg

    MATH  Google Scholar 

  16. Yosida K (1980). Functional Analysis. Springer, New York

    MATH  Google Scholar 

  17. Zwart H (1988). Equivalence between open-loop and closed-loop invariance for infinite-dimensional systems: a frequency domain approach. SIAM J Control Optim 26(5): 1175–1199

    Article  MATH  MathSciNet  Google Scholar 

  18. Zwart H (1989). Geometric theory for infinite dimensional systems. Lecture Notes in Control and Information Sciences, vol 115. Springer, Heidelberg

    Google Scholar 

  19. Zwart H (1990) On the solution of the DDP in infinite-dimensional systems. Signal processing, scattering and operator theory and numerical methods. Progr. Systems Control Theory, vol 5. Birkhauser, Boston, pp 363–372

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Morris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, K., Rebarber, R. Feedback invariance of SISO infinite-dimensional systems. Math. Control Signals Syst. 19, 313–335 (2007). https://doi.org/10.1007/s00498-007-0021-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-007-0021-9

Keywords