Skip to main content
Log in

A functional iterative approach to the tracking control of nonminimum phase switched power converters

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

In this article, we introduce a methodology that, under appropriate assumptions, provides exact output voltage tracking of smooth periodic references in a class of nonminimum phase, single-input, basic DC-to-DC nonlinear switched power converters by means of a stable inversion approach. Firstly, a \({\fancyscript{C}^1}\) periodic (thus bounded) reference for the nonminimum phase variable that solves the corresponding stable inversion problem, rather than being numerically obtained, is approximated using a Banach’s fixed-point theorem-based iterative procedure that produces an L norm convergent sequence of \({\fancyscript{C}^1}\) periodic functions that are analytically computable in the closed form. Any element of the sequence may then be used as a reference profile for the nonminimum phase variable in an indirect, state feedback control action that includes exact tracking and stabilizing components as well. In turn, the tracking dynamics of the system yields a sequence of periodic and asymptotically stable output signals that converges in the L norm to the original output voltage profile. Furthermore, the explicit dependence of the approximate indirect references on the system parameters may provide robustness to piecewise constant disturbances by means of online dynamic compensation. The technique is exemplified on a buck-boost converter and validated through simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boudjema F, Boscardin M, Bidan P, Marpinard JC, Valentin M, Abatut JL (1989) VSS approach to a full bridge buck converter used for AC sine voltage generation. In: 15th annual conf IEEE Ind Electron Soc, pp 82–89

  2. Cáceres RO, Barbi I (1999) A boost DC–AC converter: analysis, design and experimentation. IEEE Trans Power Electron 14(1): 134–141

    Article  Google Scholar 

  3. Carpita M, Marchesoni M (1996) Experimental study of a power conditioning system using sliding mode control. IEEE Trans Power Electron 11(5): 731–742

    Article  Google Scholar 

  4. Cortés D, Álvarez JQ, Álvarez J, Fradkov A (2004) Tracking control of the boost converter. IEE Proc Control Theory Appl 151(2): 218–224

    Article  Google Scholar 

  5. Devasia S (1999) Approximated stable inversion for nonlinear systems with nonhyperbolic internal dynamics. IEEE Trans Autom Control 44(X): 1419–1424

    Article  MATH  MathSciNet  Google Scholar 

  6. Devasia S, Chen D, Paden B (1996) Nonlinear inversion-based output tracking. IEEE Trans Autom Control 41(7): 930–942

    Article  MATH  MathSciNet  Google Scholar 

  7. Devasia S, Paden B (1998) Stable inversion for nonlinear nonminimumphase time-varying systems. IEEE Trans Autom Control 43(2): 283–288

    Article  MATH  MathSciNet  Google Scholar 

  8. Fliess M, Lévine J, Martin P, Rouchon P (1995) Flatness and defect of nonlinear systems: introductory theory and examples. Int J Control 61(6): 1327–1361

    Article  MATH  Google Scholar 

  9. Fossas E, Olm JM (2002) Asymptotic tracking in DC-to-DC nonlinear power converters. Discret Cont Dynam Syst Ser B 2(2): 295–307

    Article  MATH  Google Scholar 

  10. Fossas E, Olm JM (2007) Galerkin method and approximate tracking in a nonminimum phase bilinear system. Discret Cont Dynam Syst Ser B 7(1): 53–76

    MATH  MathSciNet  Google Scholar 

  11. Fossas E, Olm JM, Zinober A, Shtessel Y (2007) Galerkin-based sliding mode tracking control of nonminimum phase DC-to-DC power converters. Int J Robust Nonlinear Control 17(7): 587–604

    Article  MATH  MathSciNet  Google Scholar 

  12. Fossas E, Olm JM, Sira-Ramírez H (2008) Iterative approximation of limit cycles for a class of Abel equations. Phys D Nonlinear Phenom 237(23): 3159–3164

    Article  MATH  Google Scholar 

  13. Hunt LR, Meyer G (1997) Stable inversion for nonlinear systems. Automatica 33(8): 1549–1554

    Article  MATH  MathSciNet  Google Scholar 

  14. Hunt LR, Ramakrishna V, Meyer G (1998) Stable inversion and parameter variations. Syst Control Lett 34(4): 203–207

    Article  MATH  MathSciNet  Google Scholar 

  15. Khalil H (2002) Nonlinear systems. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  16. Marino R, Tomei P (1995) Nonlinear control design: geometric, adaptive and robust. Prentice Hall Europe, Hempstead

    MATH  Google Scholar 

  17. Pavlov A, Pettersen KY (2007) Stable inversion of non-minimum phase nonlinear systems: a convergent systems approach. In: 46th IEEE Conf Dec Cont, pp 3995–4000

  18. Polyanin AD (2003) Handbook of exact solutions for ordinary differential equations, 2nd edn. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  19. Rodríguez H, Ortega R, Escobar G, Barabanov N (2000) A robustly stable output feedback saturated controller for the boost DC-to-DC converter. Syst Control Lett 40(1): 1–8

    Article  MATH  Google Scholar 

  20. Sastry S (1999) Nonlinear systems: analysis, stability and control. Springer, New York

    MATH  Google Scholar 

  21. Shkolnikov IA, Shtessel YB (2001) Tracking controller design for a class of nonminimum phase systems via the Method of System Center. IEEE Trans Autom Control 46(10): 1639–1642

    Article  MATH  MathSciNet  Google Scholar 

  22. Shkolnikov IA, Shtessel YB (2002) Tracking in a class of nonminimum-phase systems with nonlinear internal dynamics via sliding mode control using method of system center. Automatica 38(5): 837–842

    Article  MATH  MathSciNet  Google Scholar 

  23. Shtessel Y, Zinober A, Shkolnikov I (2003) Sliding mode control of boost and buck-boost power converters control using method of stable system centre. Automatica 39(6): 1061–1067

    Article  MATH  MathSciNet  Google Scholar 

  24. Sira-Ramírez H, Ilic-Spong M (1989) Exact linearization in DC-to-DC switched-mode DC-to-DC power converters. Int J Control 50(2): 511–524

    Article  MATH  Google Scholar 

  25. Sira-Ramírez H, Prada-Rizzo MT (1993) A dynamic pole assignment approach to stabilization and tracking in DC-to-DC full bridge power converters. Control Theory Adv Technol 9(1): 247–258

    Google Scholar 

  26. Sira-Ramírez H (2001) DC-to-AC power conversion on a ‘boost’ converter. Int J Robust Nonlinear Control 11(6): 589–600

    Article  MATH  Google Scholar 

  27. Sira-Ramírez H, Spinetti-Rivera M, Fossas E (2007) An algebraic parameter estimation approach to the adaptive observer-controller based regulation of the boost converter. In: IEEE Int Symp Ind Electron, pp 3367–3372

  28. Tan SC, Lai YM, Tse CK (2005) Implementation of pulse-width-modulation based sliding mode controllers for boost converters. IEEE Power Electron Lett 3(4): 130–135

    Article  Google Scholar 

  29. Utkin V, Guldner J, Shi J (1999) Sliding mode control in electromechanical systems. Taylor & Francis, Philadelphia

    Google Scholar 

  30. Zeidler E (1990) Nonlinear functional analysis and its applications—Part II/A: linear monotone operators. Springer, New York

    Google Scholar 

  31. Zeidler E (1993) Nonlinear functional analysis and its applications—Part I: fixed-point theorems. Springer, New York

    Google Scholar 

  32. Zeng G, Hunt LR (2000) Stable inversion of nonlinear discrete-time systems. IEEE Trans Autom Control 45(X): 1216–1220

    Article  MATH  MathSciNet  Google Scholar 

  33. Zinober A, Shtessel Y, Fossas E, Olm JM, Patterson J (2006) Nonminimum phase output tracking control strategies for DC-to-DC power converters. Lect Notes Control Inf Sci 334: 447–482

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep M. Olm.

Additional information

This work was partially supported by the Ministerio de Educación y Ciencia (MEC) under projects DPI2007-62582 (E. Fossas and J.M. Olm) and DPI2008-01408 (E. Fossas).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fossas, E., Olm, J.M. A functional iterative approach to the tracking control of nonminimum phase switched power converters. Math. Control Signals Syst. 21, 203–227 (2009). https://doi.org/10.1007/s00498-009-0044-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-009-0044-5

Keywords