Skip to main content

Advertisement

Log in

Desynchronization and inhibition of Kuramoto oscillators by scalar mean-field feedback

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

Motivated by neuroscience applications, and in particular by the deep brain stimulation treatment for Parkinson’s disease, we have recently derived a simplified model of an interconnected neuronal population under the effect of its mean-field proportional feedback. In this paper, we rely on that model to propose conditions under which proportional mean-field feedback achieves either oscillation inhibition or desynchronization. More precisely, we show that for small natural frequencies, this scalar control signal induces an inhibition of the collective oscillation. For the closed-loop system, this situation corresponds to a fixed point which is shown to be almost globally asymptotically stable in the fictitious case of zero natural frequencies and all-to-all coupling and feedback. In the case of an odd number of oscillators, this property is shown to be robust to small natural frequencies and heterogencities in both the coupling and feedback topology. On the contrary, for large natural frequencies, we show that scalar proportional mean-field feedback is able to induce desynchronization. After having recalled a formal definition for desynchronization, we show how it can be induced in a network of originally synchronized oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aeyels D, Rogge JA (2004) Existence of partial entrainment and stability of phase locking behavior of coupled oscillators. Prog Theor Phys 112(6): 921–942

    Article  MATH  Google Scholar 

  2. Angeli D, Praly L (2011) Stability robustness in the presence of exponentially unstable isolated equilibria. IEEE Trans Automat Control 56(7): 1582–1592

    Article  MathSciNet  Google Scholar 

  3. Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, Perret JE, de Rougemont J (1991) Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337: 403–406

    Article  Google Scholar 

  4. Blekhman II, Fradkov AL, Nijmeijer H, Yu Pogromsky A (1997) On self synchronization and controlled synchronization. Syst Control Lett 31: 299–305

    Article  MATH  Google Scholar 

  5. Brown E, Holmes P, Moehlis J (2003) Globally coupled oscillator networks. In: Sreenivasan K, Kaplan E, Marsden J (eds) Perspectives and Problems in Nonlinear Science: A Celebratory Volume in Honor of Larry Sirovich. Springer, New York

    Google Scholar 

  6. Chen G (2003) Chaotification via feedback: the discrete case. In: Lecture Notes in Control and Information Sciences, vol 292. Springer, Berlin

  7. Chen G, Yang L (2003) Chaotifying a continuous-time system near a stable limit cycle. Chaos Solitons Fractals 15(2): 245–253

    Article  MathSciNet  MATH  Google Scholar 

  8. Chopra N, Spong MW (2009) On exponential synchronization of Kuramoto oscillators. IEEE Trans Automat Control 54(2): 353–357

    Article  MathSciNet  Google Scholar 

  9. Dörfler F, Bullo F (2011) On the critical coupling for Kuramoto oscillators. SIAM J Appl Dyn Syst 10: 1070–1099

    Article  MathSciNet  Google Scholar 

  10. Ermentrout GB (1990) Oscillator death in populations of “all to all” coupled nonlinear oscillators. Phys D 41(2): 219–231

    Article  MathSciNet  MATH  Google Scholar 

  11. Ermentrout GB (1996) Type I membranes, phase resetting curves, and synchrony. Neural Comput 8(5): 979–1001

    Article  Google Scholar 

  12. Ermentrout GB, Kopell N (1990) Oscillator death in systems of coupled neural oscillators. SIAM J Appl Math 50(1): 125–146

    Article  MathSciNet  MATH  Google Scholar 

  13. Fradkov AL (2007) Cybernetical physics. From control of chaos to quantum control. Springer, Berlin

    MATH  Google Scholar 

  14. Franci A, Chaillet A, Pasillas-Lépine W (2010) Existence and robustness of phase-locking in coupled Kuramoto oscillators under mean-field feedback. Autom Spec Issue Biol Syst 47(6):1193–1202, (extended version available at: http://hal.archives-ouvertes.fr/hal-00526066/)

  15. Franci A, Panteley E, Chaillet A, Lamnabhi-Lagarrigue F (2011) Desynchronization of coupled phase oscillators, with application to the Kuramoto system under mean-field feedback. In: Proc. 50th. IEEE Conf Decision Contr, Orlando, FL, USA, December 2011 (in press)

  16. Gao Y, Chau K (2002) Chaotification of permanent-magnet synchronous motor drives using time-delay feedback. In: IEEE Annual Conf. of Industrial Electronics Soc., pp 762–766

  17. Golubitsky M, Guillemin V (1973) Stable mappings and their singularities graduate texts in mathematics, vol 14. Springer-Verlag, New York

    Book  Google Scholar 

  18. Guckenheimer J, Holmes P (2002) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. In: Applied Mathematical Sciences, 7th edn, vol 42. Springer, New-York

  19. Hale JK (1969) Ordinary differential equations. Interscience John Wiley, New York

    MATH  Google Scholar 

  20. Hammond C, Ammari R, Bioulac B, Garcia L (2008) Latest view on the mechanism of action of deep brain stimulation. Mov Disord 23(15): 2111–2121

    Article  Google Scholar 

  21. Hammond C, Bergman H, Brown P (2007) Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci 30(7):357–364 (July INMED/TINS special issue—physiogenic and pathogenic oscillations: the beauty and the beast)

    Google Scholar 

  22. Hauptmann C, Popovych O, Tass PA (2005) Delayed feedback control of synchronization in locally coupled neuronal networks. Neurocomputing 65: 759–767

    Article  Google Scholar 

  23. Hauptmann C, Popovych O, Tass PA (2005) Effectively desynchronizing deep brain stimulation based on a coordinated delayed feedback stimulation via several sites: a computational study. Biol Cybern 93: 463–470

    Article  MathSciNet  MATH  Google Scholar 

  24. Hauptmann C, Popovych O, Tass PA (2005) Multisite coordinated delayed feedback for an effective desynchronization of neuronal networks. Stoch Dyn 5(2): 307–319

    Article  MathSciNet  MATH  Google Scholar 

  25. Hirsch M, Pugh C, Shub M (1977) Invariant manifolds. Lecture notes in mathematics. Springer-Verlag, Berlin

    Google Scholar 

  26. Hirsch MW, Smale S (1974) Differential equations, dynamical systems, and linear algebra. In: Pure and applied mathematics. Harcourt Brace Jovanovich, Accademic Press, Massachusetts

  27. Horn RA, Johnson CR (1985) Matrix analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  28. Isidori A (1999) Nonlinear control systems II. Springer Verlag, London

    Book  MATH  Google Scholar 

  29. Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, Cambridge

    Google Scholar 

  30. Jadbabaie A, Motee N, Barahona M (2004) On the stability of the Kuramoto model of coupled nonlinear oscillators. In: Proc. American Control Conf., pp 4296–4301

  31. Khalil H (2001) Nonlinear systems 3. Prentice Hall, New York

    Google Scholar 

  32. Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer, Berlin

    Book  MATH  Google Scholar 

  33. Lee J (2006) Introduction to smooth manifolds. Graduate texts in mathematics. Springer-Verlag, Berlin

    Google Scholar 

  34. Lopez-Azcarate J, Tainta M, Rodriguez-Oroz MC, Valencia M, Gonzalez R, Guridi J, Iriarte J, Obeso JA, Artieda J, Alegre M (2010) Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson’s disease. J Neurosci 30(19): 6667–6677

    Article  Google Scholar 

  35. Luo M, Wu Y, Peng J (2009) Washout filter aided mean field feedback desynchronization in an ensemble of globally coupled neural oscillators. Biol Cybern 101: 241–246

    Article  MathSciNet  Google Scholar 

  36. Orsi R, Praly L, Mareels I (2001) Sufficient conditions for the existence of an unbounded solution. Automatica 37(10): 1609–1617

    Article  MATH  Google Scholar 

  37. Panteley E, Loría A, Teel A (2001) Relaxed persistency of excitation for uniform asymptotic stability. IEEE Trans Automat Control 46(12): 1874–1886

    Article  MathSciNet  MATH  Google Scholar 

  38. Pazó D, Zaks MA, Kurths J (2003) Role of unstable periodic orbits in phase and lag synchronization between coupled chaotic oscillators. Chaos 13(1): 309–318

    Article  MathSciNet  MATH  Google Scholar 

  39. Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization: a universal concept in nonlinear sciences. Cambridge Nonlinear Science Series, Cambridge

    Book  MATH  Google Scholar 

  40. Plenz D, Kital ST (1999) A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature 400(6745): 677–682

    Article  Google Scholar 

  41. Popovych OV, Hauptmann C, Tass PA (2005) Effective desynchronization by nonlinear delayed feedback. Phys Rev Lett 94: 164102

    Article  Google Scholar 

  42. Popovych OV, Hauptmann C, Tass PA (2006) Control of neuronal synchrony by nonlinear delayed feedback. Biol Cybern 95: 69–85

    Article  MathSciNet  MATH  Google Scholar 

  43. Popovych OV, Hauptmann C, Tass PA (2006) Desynchronization and decoupling of interacting oscillators by nonlinear delayed feedback. Int J Bifurc Chaos 16(7): 1977–1987

    Article  MathSciNet  MATH  Google Scholar 

  44. Popovych OV, Tass PA (2010) Synchronization control of interacting oscillatory ensembles by mixed nonlinear delayed feedback. Phys Rev E 82(2): 026204

    Article  MathSciNet  Google Scholar 

  45. Popovych OV, Krachkovskyi V, Tass PA (2007) Twofold impact of delayed feedback on coupled oscillators. Int J Bifurc Chaos 17(7): 2517–2530

    Article  MathSciNet  MATH  Google Scholar 

  46. Pyragas K, Popovich OV, Tass PA (2008) Controlling synchrony in oscillatory networks with a separate stimulation-registration setup. Eur Phys Lett. 80(4): 40002:1–40002:6

    Google Scholar 

  47. Rosa M, Marceglia S, Servello D, Foffani G, Rossi L, Sassi M, Mrakic-Sposta S, Zangaglia R, Pacchetti C, Porta M, Priori A (2010) Time dependent subthalamic local field potential changes after DBS surgery in Parkinson’s disease. Exp Neurol 222: 184–190

    Article  Google Scholar 

  48. Rosenblum M, Pikovsky A (2004) Delayed feedback control of collective synchrony: an approach to suppression of pathological brain rhythms. Phys Rev E 70(4): 041904

    Article  MathSciNet  Google Scholar 

  49. Rosenblum MG, Pikovsky AS (2004) Controlling synchronization in an ensemble of globally coupled oscillators. Phys Rev Lett 92: 114102

    Article  Google Scholar 

  50. Rosenblum MG, Tukhlina N, Pikovsky A, Cimponeriu L (2006) Delayed feedback suppression of collective rhythmic activity in a neuronal ensemble. Int J Bifurc Chaos 16(7): 1989–1999

    Article  MathSciNet  MATH  Google Scholar 

  51. Sarlette A (2009) Geometry and Symmetries in Coordination Control. PhD thesis, University of Liège, Belgium

  52. Sarma SV, Cheng M, Williams Z, Hu R, Eskandar E, Brown EN (2010) Comparing healthy and Parkinsonian neuronal activity in sub-thalamic nucleus using point process models. IEEE Trans Biomed Eng 57(6): 1297–1305

    Article  Google Scholar 

  53. Sepulchre R, Paley DA, Leonard NE (2007) Stabilization of planar collective motion: all-to-all communication. IEEE Trans Automat Control 52(5): 811–824

    Article  MathSciNet  Google Scholar 

  54. Sijbrand J (1985) Properties of center manifolds. Trans Am Math Soc 289(2): 431–469

    Article  MathSciNet  MATH  Google Scholar 

  55. Strogatz SH (2000) From Kuramoto to Crawford: exploring the onset of synchronization in population of coupled oscillators. Phys D 143: 1–20

    Article  MathSciNet  MATH  Google Scholar 

  56. Tukhlina N, Rosenblum M (2008) Feedback suppression of neural synchrony in two interacting populations by vanishing stimulation. J Biol Phys 34: 301–314

    Article  Google Scholar 

  57. Tukhlina N, Rosenblum M, Pikovsky A, Kurths J (2007) Feedback suppression of neural synchrony by vanishing stimulation. Phys Rev E 75(1): 011918

    Article  MathSciNet  Google Scholar 

  58. Volkmann J, Joliot M, Mogilner A, Ioannides AA, Lado F, Fazzini E, Ribary U, Llinás R (1996) Central motor loop oscillations in Parkinsonian resting tremor revealed by magnetoencephalography. Neurology 46: 1359–1370

    Google Scholar 

  59. Winfree AT (1980) The geometry of biological times. Springer, New-York

    Google Scholar 

  60. Zhang H, Liu D, Wang Z (2009) Controlling chaos: suppression, synchronization and chaotification. In: Communications and Control Engineering. Springer-Verlag, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Franci.

Additional information

The research leading to these results has received funding from the European Union Seventh Framework Programme [FP7/2007-2013] under grant agreement n257462 HYCON2 Network of excellence, and by the French CNRS through the PEPS project TREMBATIC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franci, A., Chaillet, A., Panteley, E. et al. Desynchronization and inhibition of Kuramoto oscillators by scalar mean-field feedback. Math. Control Signals Syst. 24, 169–217 (2012). https://doi.org/10.1007/s00498-011-0072-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-011-0072-9

Keywords

Navigation