Skip to main content
Log in

Particular solution of infinite-dimensional linear systems with applications to trajectory planning of boundary control systems

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

This paper considers a general class of infinite-dimensional linear control systems described by either a state-space (SCS) or boundary control (BCS) system formulation. A key objective of the paper is to accomplish trajectory planning of a BCS through a ‘stable’ dynamic inversion without resorting to discretization. To this end, the paper first formulates the particular solution of an infinite-dimensional SCS within a Sobolev space together with a set of necessary and sufficient conditions for its existence and an explicit formula for computing it. The resulting solution, which may be noncausal, is further utilized to explicitly compute the bounded control input needed for output tracking of a BCS without requiring its inverse to be minimum phase or even to possess a \(C_{0}\)-semigroup. The key results of the paper are illustrated on a flexible beam and a one-dimensional heat conduction system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Curtain R, Zwart H (1995) An introduction to infinite dimensional systems theory, vol 21. Springer, New York

  2. Pazy A (1983) Semigroups of linear operators and applications to partial differential equations, vol 44. Springer, New York

  3. Salamon D (1987) Infinite dimensional linear systems with unbounded control and observation: a functional analysis approach. Trans Am Math Soc 300(2):383–431

    Google Scholar 

  4. Cheng A, Morris K (2003) Well-posedness of boundary control systems. SIAM J Control Optim 42(4):1244–1265

    Article  MATH  MathSciNet  Google Scholar 

  5. Poznyak A, Palacios A (1999) Robust boundary control for linear time-varying infinite dimensional systems. Int J Control 72(5):392–403

    Article  MATH  MathSciNet  Google Scholar 

  6. Weiss G (1989) Admissibility of unbounded control operators. SIAM J Control Optim 27(3):527–545

    Article  MATH  MathSciNet  Google Scholar 

  7. Weiss G (1989) Admissible observation operators for linear semigroups. Israel J Math 65(1):17–43

    Article  MATH  MathSciNet  Google Scholar 

  8. Curtain R, Morris K (2009) Transfer functions of distributed parameter systems: a tutorial. Automatica 45:1101–1116

    Article  MATH  MathSciNet  Google Scholar 

  9. Bayo E (1987) A finite-element approach to control the end-point motion of a single link exible robot. Int J Robot Syst 4(1):63–75

    Article  Google Scholar 

  10. Kwon DS, Book W (1994) A time-domain inverse dynamic tracking control of a single-link flexible manipulator. Trans ASME J Dyn Syst Meas Control 116(2):193–200

    Article  MATH  Google Scholar 

  11. Lee Y, Speyer J (1993) Zero locus of a beam with varying sensor and actuator locations. AIAA J Guid Control Dyn 16(1):21–25

    Article  Google Scholar 

  12. Devasia S, Chen D, Paden B (1996) Nonlinear inversion based output tracking. IEEE Trans Autom Control 41(7):930–942

    Article  MATH  MathSciNet  Google Scholar 

  13. Fliess M, Lévine J, Martin P, Rouchon P (1995) Flatness and defect of nonlinear systems: introductory theory and examples. Int J Control 61(6):1327–1361

    Article  MATH  Google Scholar 

  14. Martin P, Devasia S, Paden B (1996) A different look at output feedback: control of a VTOL aircraft. Automatica 32(1):101–108

    Article  MATH  Google Scholar 

  15. Lynch A, Wang D (2004) Flatness-based control of a flexible beam in a gravitational field. In: Proceedings of the 2004 American Control Conference. pp 5449–54

  16. Laroche B, Martin P, Rouchon P (2000) Motion planning for the heat equation. Int J Robust Nonlinear Control 10(8):629–643

    Article  MATH  MathSciNet  Google Scholar 

  17. Neubrander F (1988) Integrated semigroups and their applications to the abstract Cauchy problem. Pac J Math 135(1):111–155

    Article  MATH  MathSciNet  Google Scholar 

  18. Lions J, Magenes E (1972) Non-homogeneous boundary value problems and applications, vol I, II. Springer, New York

  19. Rudin W (1987) Real and complex analysis. McGraw-Hill Book Company, New York

  20. Dunfors N, Schwartz J (1963) Linear operators, vol I. Interscience, New York, pp 95–154

  21. Staffans O, Weiss G (2004) Transfer functions of regular linear systems. III. Inversions and duality. Integral Equ Oper Theory 49(4):517–558

    Article  MATH  MathSciNet  Google Scholar 

  22. Isidori A (1995) Nonlinear control systems, vol 1, 3rd edn. Springer, Berlin, pp 162–172

  23. Morris K, Rebarber R (2007) Feedback invariance of SISO infinite-dimensional systems. Math Control Signals Syst 19(4):313–335

    Article  MATH  MathSciNet  Google Scholar 

  24. Morgull O (1992) Dynamic boundary control of a Euler–Bernoulli beam. IEEE Trans Autom Control 37(5):639–642

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Sadegh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 3676 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadegh, N. Particular solution of infinite-dimensional linear systems with applications to trajectory planning of boundary control systems. Math. Control Signals Syst. 26, 279–301 (2014). https://doi.org/10.1007/s00498-013-0119-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-013-0119-1

Keywords

Navigation