Skip to main content
Log in

How mild can slow controls be?

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

For a linear control system, if a state can be steered to zero in some time, then it can be steered to zero in any larger time and it is expected that, as the time grows, the norm of the corresponding control to be smaller. We study here the behavior of the minimum \(L^p\)-control, \(p\in (1,+\infty ]\), as time duration goes to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azé D, Cârjă O (2000) Fast controls and minimum time. Control Cybern 29(4):887–894

    MATH  Google Scholar 

  2. Barbu V (1980) Boundary control problems with convex cost criterion. SIAM J Control Optim 18(2):227–243

    Google Scholar 

  3. Bardi M, Capuzzo-Dolcetta I (1997) Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  4. Bensoussan A, Da Prato G, Delfour MC, Mitter SK (2007) Representation and control of infinite dimensional systems, 2nd edn. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  5. Cârjă O (1986) A note on admissible null controllability and on variational perturbations of the minimum time problem. An Ştiinţ Univ Al I Cuza Iaşi Secţ I a Mat 32(1):13–19

    Google Scholar 

  6. Cârjă O (1988) On constraint controllability of linear systems in Banach spaces. J Optim Theory Appl 56(2):215–225

    Article  MathSciNet  MATH  Google Scholar 

  7. Cârjă O (1993) The minimal time function in infinite dimensions. SIAM J Control Optim 31(5):1103–1114

    Google Scholar 

  8. Cârjă O, Lazu A (2009) On the minimal time null controllability of the heat equation. Discrete Contin Dyn Syst. In: Dynamical systems, differential equations and applications 7th AIMS Conference, pp 143–150

  9. Fernández-Cara E, Zuazua E (2000) Null and approximate controllability for weakly blowing up semilinear heat equations. Ann Inst H Poincaré Anal Non Linéaire 17(5):583–616

    Article  MATH  Google Scholar 

  10. Fursikov AV, Imanuvilov OY (1996) Controllability of evolution equations. Seoul National University, Seoul

    MATH  Google Scholar 

  11. Ivanov S (1999) Control norms for large control times. ESAIM Control Optim Calc Var 4:405–418

    Article  MathSciNet  MATH  Google Scholar 

  12. Krabs W (1985) On time-minimal distributed control of vibrating systems governed by an abstract wave equation. Appl Math Optim 13(2):137–149

    Google Scholar 

  13. Krabs W (1989) On time-minimal distributed control of vibrations. Appl Math Optim 19(1):65–73

    Article  MathSciNet  MATH  Google Scholar 

  14. Miller L (2010) A direct Lebeau–Robbiano strategy for the observability of heat-like semigroups. Discrete Contin Dyn Syst Ser B 14(4):1465–1485

    Google Scholar 

  15. Narukawa K (1981) Admissible null controllability and optimal time control. Hiroshima Math J 11(3):533–551

    MathSciNet  MATH  Google Scholar 

  16. Pandolfi L, Priola E, Zabczyk J (2013) Linear operator inequality and null controllability with vanishing energy for unbounded control systems. SIAM J Control Optim 51(1):629–659

    Article  MathSciNet  MATH  Google Scholar 

  17. Priola E, Zabczyk J (2003) Null controllability with vanishing energy. SIAM J Control Optim 42(3):1013–1032

    Article  MathSciNet  MATH  Google Scholar 

  18. Schmidt G (1980) The “bang–bang” principle for the time-optimal problem in boundary control of the heat equation. SIAM J Control Optim 18(2):101–107

    Article  MathSciNet  MATH  Google Scholar 

  19. Seidman TI (1977) Observation and prediction for the heat equation. IV. Patch observability and controllability. SIAM J Control Optim 15(3):412–427

    Google Scholar 

  20. Seidman TI (1982) Regularity of optimal boundary controls for parabolic equations. I. Analyticity. SIAM J Control Optim 20(3):428–453

    Article  MathSciNet  MATH  Google Scholar 

  21. Seidman TI (1984) Two results on exact boundary control of parabolic equations. Appl Math Optim 11(2):145–152

    Article  MathSciNet  MATH  Google Scholar 

  22. Seidman TI (1988) How violent are fast controls? Math Control Signals Syst 1(1):89–95

    Article  MathSciNet  MATH  Google Scholar 

  23. Seidman TI, Yong J (1996) How violent are fast controls? II. Math Control Signals Syst 9(4):327–340

    Article  MathSciNet  MATH  Google Scholar 

  24. Seidman TI (2008) How violent are fast controls III. J Math Anal Appl 339(1):461–468

    Google Scholar 

  25. Tenenbaum G, Tucsnak M (2011) On the null-controllability of diffusion equations. ESAIM Control Optim Calc Var 17(4):1088–1100

    Article  MathSciNet  MATH  Google Scholar 

  26. Triggiani R (2003) Optimal estimates of norms of fast controls in exact null controllability of two non-classical abstract parabolic systems. Adv Differ Equ 8(2):189–229

    MathSciNet  MATH  Google Scholar 

  27. Tucsnak M (2009) Observation and control for operator semigroups. Birkhäuser, Basel

    Book  MATH  Google Scholar 

  28. Vieru A (2005) On null controllability of linear systems in Banach spaces. Syst Control Lett 54(4):331–337

    Article  MathSciNet  MATH  Google Scholar 

  29. Weiss G (1989) Admissibility of unbounded control operators. SIAM J Control Optim 27:527–545

    Article  MathSciNet  MATH  Google Scholar 

  30. Zuazua E (2007) Controllability and observability of partial differential equations: some results and open problems. In: Handbook of differential equations: evolutionary equations, vol 3. Elsevier/North-Holland, Amsterdam, pp 527–621

Download references

Acknowledgments

The research was supported by ID PNII-CT-ERC-2012 1, “Interconnected Methods to Analysis of Deterministic and Stochastic Partial Differential Equations”, project number 1ERC/02.07.2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Cârjă.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cârjă, O., Lazu, A.I. How mild can slow controls be?. Math. Control Signals Syst. 26, 547–562 (2014). https://doi.org/10.1007/s00498-014-0129-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-014-0129-7

Keywords

Navigation