Skip to main content
Log in

Optimal actuator location for time and norm optimal control of null controllable heat equation

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We consider minimal time and minimal norm of the optimal controls for a multi-dimensional internally controlled heat equation with control domain varying over a class of open sets. Two problems are formulated separately into different types of shape optimization problems over this open set class. The governing equation with any given initial value and admissible control are considered as constraints, and minimal time or minimal norm of the optimal controls is considered as cost for related shape optimization. The solution of the shape optimization leads to the optimal actuator location for optimal controls. The existence of such an optimal location domain for both minimal time and minimal norm controls is presented. A different problem that relates the balance between minimal time and minimal norm controls is also discussed. This study builds a link between optimal control and shape optimization for this multi-dimensional heat equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams RA, Fournier JJF (2003) Sobolev spaces, 2nd edn. Academic Press, New York

    MATH  Google Scholar 

  2. Apraiz J, Escauriaza L, Wang G, Zhang C (2013) Observability inequalities and measurable sets. Wuhan University, China

    Google Scholar 

  3. Allaire G, Münch A, Periago F (2010) Long time behavior of a two-phase optimal design for the heat equation. SIAM J Control Optim 48:5333–5356

    Article  MATH  MathSciNet  Google Scholar 

  4. Barbu V (2011) Stabilization of Navier–Stokes flows. Springer-Verlag, London

    Book  MATH  Google Scholar 

  5. Bucur D, Buttazzo G (2005) Variational methods in shape optimization problems. Birkhäuser, Boston

    MATH  Google Scholar 

  6. Chenais D (1975) On the existence of a solution in a domain identification problem. J Math Anal Appl 52:189–219

    Article  MATH  MathSciNet  Google Scholar 

  7. Delfour MC, Zolésio JP (2001) Shapes and geometries. SIAM, New York

    MATH  Google Scholar 

  8. Darivandi N, Morris KA, Khajepour A (In press) An algorithm for LQ optimal actuator location, Smart materials and structures

  9. Evans LC, Gariepy RF (1992) Measure theory and fine properties of functions. CRC Press, London

    MATH  Google Scholar 

  10. Fattorini HO (1964) Time-optimal control of solutions of operational differenital equations. J Soc Indust Appl Math Ser A Control 2:54–59

    Article  MATH  MathSciNet  Google Scholar 

  11. Fattorini HO (2005) Infinite dimensional linear control systems, the time optimal and norm optimal problems, North-Holland mathematics studies, vol 201. Elsevier Science B.V, Amsterdam

    Google Scholar 

  12. Fattorini HO (2011) Time and norm optimal controls: a survey of recent results and open problems. Acta Math Sci Ser B Engl Ed 31:2203–2218

    Article  MATH  MathSciNet  Google Scholar 

  13. Fattorini HO, Russell DL (1971) Exact controllability theorems for linear parabolic equations in one space dimension. Arch Ratl Mech Anal 43:272–292

    Article  MATH  MathSciNet  Google Scholar 

  14. Frecker MI (2003) Recent advances in optimization of smart structures and actuators. J Intell Mater Syst Struct 14:207–216

    Article  Google Scholar 

  15. Guo BZ, Yang DH (2012) Some compact classes of open sets under Hausdorff distance and application to shape optimization. SIAM J Control Optim 50:222–242

    Article  MATH  MathSciNet  Google Scholar 

  16. Guo BZ, Yang DH (2013) On convergence of boundary Hausdorff measure and application to a boundary shape optimization problem. SIAM J Control Optim 51:253–272

    Article  MATH  MathSciNet  Google Scholar 

  17. Hebrard P, Henrot A (2005) A spillover phenomenon in the optimal location of actuators. SIAM J Control Optim 44:349–366

    Article  MATH  MathSciNet  Google Scholar 

  18. Hebrard P, Henrot A (2003) Optimal shape and position of the actuators for the stabilization of a string. Syst Control Lett 48:199–209

    Article  MATH  MathSciNet  Google Scholar 

  19. Henrot A, Pierre M (2005) Variation et Optimisation de Formes: Une Analyse Géométrique, vol 48. Springer-Verlag, Berlin

    Google Scholar 

  20. Imanuvilov OYu (1993) Boundary controllability of parabolic equations. Uspekhi Mat Nauk 48:211–212

    MathSciNet  Google Scholar 

  21. Imanuvilov OYu (1995) Controllability of parabolic equations. Mat Sb 186:109–132

    MathSciNet  Google Scholar 

  22. Moallem M, Kermani M, Patel R, Ostojic M (2004) Flexure control of a positioning system using piezoelectric transducers. IEEE Trans Control Syst Technol 12:752–757

    Article  Google Scholar 

  23. Lebeau G, Robbiano L (1995) Contrôle exact de l’équation de la chaleur. Comm Partial Diff Equ 20:335–356

    Article  MATH  MathSciNet  Google Scholar 

  24. Morris K (1998) Noise reduction achievable by point control. ASME J Dyn Syst Meas Control 120:216–223

    Article  Google Scholar 

  25. Morris K (2011) Linear-quadratic optimal actuator location. IEEE Trans Autom Control 56:113–124

    Article  Google Scholar 

  26. Münch A (2008) Optimal design of the support of the control for the 2-D wave equation: a numerical method. Int J Numer Anal Model 5:331–351

    MATH  MathSciNet  Google Scholar 

  27. Münch A, Pedregal P, Francisco P (2006) Optimal design of the damping set for the stabilization of the wave equation. J Diff Equ 231:331–358

    Article  MATH  Google Scholar 

  28. Münch A, Periago F (2013) Numerical approximation of bang–bang controls for the heat equation: an optimal design approach. Syst Control Lett 62:643–655

    Article  MATH  Google Scholar 

  29. Münch A (2009) Optimal location of the support of the control for the 1-D wave equation: numerical investigations. Comput Optim Appl 42:383–412

    Article  Google Scholar 

  30. Münch A, Periago F (2011) Optimal distribution of the internal null control for the 1-D heat equation. J Diff Equ 250:95–111

    Article  MATH  Google Scholar 

  31. Phung KD, Wang G, Zhang X (2007) On the existence of time optimal controls for linear evolution equations. Discrete Contin Dyn Syst Ser B 8:925–941

    Article  MATH  MathSciNet  Google Scholar 

  32. Pironneau O (1984) Optimal shape design for elliptic systems. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  33. Privat Y, Trelat E, Zuazua E (2013) Complexity and regularity of maximal energy domains for the wave equation with fixed initial data, Preprint

  34. Privat Y, Trelat E, Zuazua E (2013) Optimal location of controllers for the 1-D wave equation. Ann Inst H Poincare Anal Non Lineaire 30:1097–1126

    Article  MATH  MathSciNet  Google Scholar 

  35. Privat Y, Trelat E, Zuazua E (2013) Optimal observability of the multi-dimensional wave and Schrödinger equations in quantum ergodic domains, Preprint

  36. Wouwer AV, Point N, Porteman S, Remy M (2000) An approach to the selection of optimal sensor locations in distributed parameter systems. J Proc Control 10:291–300

    Article  Google Scholar 

  37. Sverák V (1993) On optimal shape design. J Math Pures Appl 72:537–551

    MATH  MathSciNet  Google Scholar 

  38. Tiba D (2011) Finite element approximation for shape optimization problems with Neumann and mixed boundary conditions. SIAM J Control Optim 49:1064–1077

    Article  MATH  MathSciNet  Google Scholar 

  39. Wang G (2004) The existence of time optimal control of semilinear parabolic equations. Syst Control Lett 53:171–175

    Article  MATH  Google Scholar 

  40. Wang G (2008) \(L^\infty \)-null controllability for the heat equation and its consequences for the time optimal control problem. SIAM J Control Optim 47:1701–1720

    Article  MATH  MathSciNet  Google Scholar 

  41. Wang G, Zuazua E (2012) On the equivalence of minimal time and minimal norm controls for internally controlled heat equations. SIAM J Control Optim 50:2938–2958

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor Lijuan Wang of Wuhan University for the helpful discussions about the problems discussed in this paper. The anonymous reviewers indicated that the proof of Lemma 7 is similar to related part in reference [19] that is unfortunately not available in the English world.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Hui Yang.

Additional information

This work was carried out with the support of the National Natural Science Foundation of China, the National Basic Research Program of China (2011CB808002), and the National Research Foundation of South Africa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, BZ., Yang, DH. Optimal actuator location for time and norm optimal control of null controllable heat equation. Math. Control Signals Syst. 27, 23–48 (2015). https://doi.org/10.1007/s00498-014-0133-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-014-0133-y

Keywords

Navigation