Skip to main content
Log in

Constructing simulation relations for IDO systems affine in inputs and disturbances

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We introduce a new algorithm for generating simulation relations between nonlinear control systems that are affine in inputs and disturbances and provide precise mathematical conditions ensuring that the algorithm works as intended. In addition, we prove that under appropriate conditions, making the “right choices” in the algorithm leads to a maximal simulation relation. Finally, we construct several illustrative examples showing in detail how the algorithm works in specific instances and also indicate some of the limitations of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brunovsky P (1970) A classification of linear controllable systems. Kybernetika 6(3):173–188

    MathSciNet  Google Scholar 

  2. Girard A, Pappas GJ (2009) Hierarchical control systems design using approximate simulation. Autom J IFAC 45(2):566–571

    Article  MathSciNet  Google Scholar 

  3. Girard A, Pappas GJ (2011) Approximate bisimulation: a bridge between computer science and control theory. Eur J Control 17(5–6):568–578

    Article  MathSciNet  Google Scholar 

  4. Julius AA, D’Innocenzo A, Di Benedetto MD, Pappas GJ (2009) Approximate equivalence and synchronization of metric transition systems. Syst Control Lett 58(2):94–101

    Article  Google Scholar 

  5. Grasse KA (2003) Admissibility of trajectories for control systems related by smooth mappings. Math Control Signals Syst 16(2–3):120–140

    Article  MathSciNet  Google Scholar 

  6. Grasse KA (2007) Simulation and bisimulation of nonlinear control systems with admissible classes of inputs and disturbances. SIAM J Control Optim 46(2):562–584

    Article  MathSciNet  Google Scholar 

  7. Grasse KA (2008) Admissible simulation relations, set-valued feedback, and controlled invariance. Math Control Signals Syst 20(3):199–226

    Article  MathSciNet  Google Scholar 

  8. Grasse KA (2012) A connection between simulation relations and feedback transformations in nonlinear control systems. Syst Control Lett 61(5):631–637

    Article  MathSciNet  Google Scholar 

  9. Haghverdi E, Tabuada P, Pappas G (2003) Bisimulation relations for dynamical and control systems. Electr Notes Theor Comp Sci 69(2):120–132

    Article  Google Scholar 

  10. Jakubczyk B (1990) Equivalence and invariants of nonlinear control systems. In: Sussmann HJ (ed) Nonlinear controllability and optimal control. Marcel-Dekker, New York, pp 177–218

    Google Scholar 

  11. Krener AJ (1973) On equivalence of control systems and the linearization of nonlinear systems. SIAM J Control 11(4):670–676

    Article  MathSciNet  Google Scholar 

  12. Munteanu L (2011) Generating simulation relations for certain nonlinear control systems. Ph. D. dissertation, University of Oklahoma

  13. Nijmeijer H, van der Schaft AJ (1990) Nonlinear dynamical control systems. Springer, New York

    Book  Google Scholar 

  14. Pappas GJ, Lafferriere G, Sastry S (2000) Hierarchically consistent control systems. IEEE Trans Autom Control 45(6):1144–1160

    Article  MathSciNet  Google Scholar 

  15. Pappas GJ (2003) Bisimilar linear systems. Automa J IFAC 39(12):2035–2047

    Article  MathSciNet  Google Scholar 

  16. van der Schaft AJ (2004) Equivalence of dynamical systems by bisimulation. IEEE Trans Autom Control 49(12):2160–2172

    Article  Google Scholar 

  17. Tabuada P (2007) Approximate simulation relations ans finite abstraction of quantized control systems. In: Hybrid systems: computation and control, Lecture notes in comput. Sci., vol 4416. Springer, Berlin, pp. 529–542

  18. Tabuada P (2008) An approximate simulation approach to symbolic control. IEEE Trans Autom Control 53(6):1406–1418

    Article  MathSciNet  Google Scholar 

  19. Tabuada P (2009) Verification and control of hybrid systems. In: A symbolic approach, (With a foreword by Rajjev Alur), Springer, New York, pp xvi\(+\)202. ISBN: 978-1-4419-0223-8

  20. Tabuada P, Pappas GJ (2004) Bisimilar control affine systems. Syst Control Lett 52(1):49–58

    Article  MathSciNet  Google Scholar 

  21. Tabuada P, Pappas GJ (2005) Hierarchical trajectory refinement for a class of nonlinear systems. Autom J IFAC 41(4):701–708

    Article  MathSciNet  Google Scholar 

  22. Vinjamoor H, van der Schaft AJ (2011) The achievable dynamics via control by interconnection. IEEE Trans Autom Control 56(5):1110–1117

    Article  Google Scholar 

  23. Vinjamoor H, van der Schaft AJ (2011) What can the canonical controler in principle tell us? Syst Control Lett 60(8):644–649

    Article  Google Scholar 

  24. Warner F (1971) Foundations of differential geometry and lie groups. Scott Foresman and Company, Glenview

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Munteanu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munteanu, L., Grasse, K.A. Constructing simulation relations for IDO systems affine in inputs and disturbances. Math. Control Signals Syst. 27, 317–346 (2015). https://doi.org/10.1007/s00498-015-0142-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-015-0142-5

Keywords

Mathematics Subject Classification

Navigation