Skip to main content
Log in

Zero dynamics and root locus for a boundary controlled heat equation

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We consider single-input single-output systems whose internal dynamics are described by the heat equation on some domain \(\varOmega \subset {\mathbb {R}}^d\) with sufficiently smooth boundary \(\partial \varOmega \). The scalar input is formed by the Neumann boundary values which are forced to be constant in space; the output consists of the integral over the Dirichlet boundary values. We show that the transfer function admits some partial fraction expansion with positive residues. The location of the transmission zeros and invariant zeros is further analyzed. Thereafter we show that the zero dynamics are fully described by a self-adjoint and exponentially stable semigroup. The spectrum of its generator is proven to be the set of invariant zeros. Finally, we show that any positive proportional output feedback results in an exponentially stable system. We further analyze the root loci: as the proportional gain tends to infinity, the eigenvalues of the generator of the closed-loop system converge to the invariant zeros.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams RA (1975) Sobolev spaces. No. 65 in pure and applied mathematics. Academic Press, New York

    Google Scholar 

  2. Arendt W, ter Elst A (2012) From forms to semigroups. Spectral theory, mathematical system theory, evolution equations, differential and difference equations, operator theory: advances and applications, vol 221. Springer, Basel, pp 47–69

    Chapter  Google Scholar 

  3. Byrnes CI, Gilliam DS, He J (1994) Root-locus and boundary feedback design for a class of distributed parameter systems. SIAM J Control Optim 32(5):1364–1427

    Article  MathSciNet  MATH  Google Scholar 

  4. Byrnes CI, Gilliam DS, Isidori A, Shubov VI (2006) Zero dynamics modeling and boundary feedback design for parabolic systems. Math Comput Model 44:857–869

    Article  MathSciNet  MATH  Google Scholar 

  5. Byrnes CI, Isidori A (1991) Asymptotic stabilization of minimum phase nonlinear systems. IEEE Trans Automat Control 36(10):1122–1137

    Article  MathSciNet  MATH  Google Scholar 

  6. Byrnes CI, Gilliam DS, Shubov VI, Weiss G (2002) Regular linear systems governed by a boundary controlled heat equation. J Dyn Control Syst 8(3):341–370

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng A, Morris KA (2003a) Well-posedness of boundary control systems. SIAM J Control Optim 42(4):1244–1265

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng A, Morris KA (2003b) Accurate approximation of invariant zeros for a class of siso abstract boundary control systems. In: Proceedings of 42nd IEEE conference on decision and control, Hawaii, pp 1315–1320

  9. Dautray R, Lions JL (2000) Mathematical analysis and numerical methods for science and technology volume 3: spectral theory and applications. Springer, Berlin

    Book  Google Scholar 

  10. Diestel J, Uhl J (1977) Vector measures, mathematical surveys and monographs, vol 15. American Mathematical Society, Providence

    Google Scholar 

  11. Haroske D, Triebel H (2008) Distributions, sobolev spaces, elliptic equations, EMS textbooks in mathematics, vol 4. EMS Publishing House, Zürich

    Google Scholar 

  12. Ilchmann A (1993) Non-Identifier-based high-gain adaptive control. Lecture notes in control and information sciences, vol 189. Springer, London

    Google Scholar 

  13. Ilchmann A, Selig T, Trunk C (2013) The Byrnes-Isidori form for infinite-dimensional systems. Technical report, TU Ilmenau, submitted for publication

  14. Jacob B, Morris K (2011) Root locus for infinite-dimensional systems. In: Proceedings of 50th IEEE conference on decision and control, Orlando, Dec. 12–15, 2011

  15. Kato T (1980) Perturbation theory for linear operators, 2nd edn. Springer, Heidelberg

    MATH  Google Scholar 

  16. Kobayashi T (1992) Zeros and design of control systems for distributed parameter systems. Int J Syst Sci 23(9):1507–1515

    Article  MATH  Google Scholar 

  17. Kobayashi T, Fan J, Sato K (1995) Invariant zeros of distributed parameter systems. Trans Inst Syst Control Inform Eng 8(3):106–114

    MathSciNet  Google Scholar 

  18. Logemann H, Zwart HJ (1991) Some remarks on adaptive stabilization of infinite-dimensional systems. Systems Control Lett 16:199–207

    Article  MathSciNet  MATH  Google Scholar 

  19. Lunardi A (1995) Analytic semigroups and optimal regularity in parabolic problems. Birkhäuser Verlag, Basel

    Book  MATH  Google Scholar 

  20. Morris KA (2000) Introduction to feedback control. Harcourt-Brace, San Diego

    Google Scholar 

  21. Morris KA, Rebarber R (2007) Feedback invariance of SISO infinite-dimensional systems. Math Control Signals Syst 19:313–335

    Article  MathSciNet  MATH  Google Scholar 

  22. Morris KA, Rebarber R (2010) Invariant zeros of SISO infinite-dimensional systems. Int J Control 83:2573–2579

    Article  MathSciNet  MATH  Google Scholar 

  23. Rosenbrock HH (1970) State space and multivariable theory. Wiley, New York

    MATH  Google Scholar 

  24. Rudin W (1987) Real and complex analysis, 3rd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  25. Staffans OJ (2005) Well-posed linear systems, encyclopedia of mathematics and its applications, vol 103. Cambridge University Press, Cambridge

    Book  Google Scholar 

  26. Trentelman HL, Stoorvogel AA, Hautus M (2001) Control theory for linear systems. Communications and control engineering. Springer, London

    Book  Google Scholar 

  27. Triebel H (1995) Interpolation theory, function spaces, differential operators. Johann Ambrosius Barth Verlag, Heidelberg

    MATH  Google Scholar 

  28. Tucsnak M, Weiss G (2009) Observation and control for operator semigroups. Birkhäuser advanced texts. Basler Lehrbücher, Birkhäuser, Basel

    Book  Google Scholar 

  29. Weiss G (1994a) Regular linear systems with feedback. Math Control Signals Syst 7(1):23–57

    Article  MATH  Google Scholar 

  30. Weiss G (1994b) Transfer functions of regular linear systems, part I: characterizations of Regularity. Trans Am Math Soc 342(2):827–854

    MATH  Google Scholar 

  31. Weiss G, Xu CZ (2005) Spectral properties of infinite-dimensional closed-loop systems. Math Control Signals Syst 17(3):153–172

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhou K, Doyle JC, Glover K (1996) Robust and optimal control. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  33. Zwart HJ (2004) Transfer functions for infinite-dimensional systems. Syst Control Lett 57(3–4):247–255

    Article  MathSciNet  Google Scholar 

  34. Zwart HJ, Hof B (1997) Zeros of infinite-dimensional systems. IMA J Math Control Inform 14:85–94

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Reis.

Additional information

This work was supported by the Klaus Tschira Stiftung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reis, T., Selig, T. Zero dynamics and root locus for a boundary controlled heat equation. Math. Control Signals Syst. 27, 347–373 (2015). https://doi.org/10.1007/s00498-015-0143-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-015-0143-4

Keywords

Navigation