Skip to main content
Log in

Discrete-time map for an impulsive Goodwin oscillator with a distributed delay

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

A system of impulsive integro-differential equations representing a hybrid counterpart of the renown Goodwin oscillator is considered. The continuous part of the system possesses a cascade structure and contains a distributed bounded delay. The impulses impacting the continuous part are modulated in amplitude and frequency by the continuous output thus implementing an impulsive feedback. This kind of mathematical models appears in mathematical biology and computational medicine. Applying a version of the linear chain trick, it is demonstrated that a discrete-time (Poincaré) map can be constructed to capture the main dynamical properties of the system in hand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bainov D, Simeonov P (1993) Impulsive differential equations: periodic solutions and applications. Longman, Harlow

    MATH  Google Scholar 

  2. Cartwright M, Husain M (1986) A model for the control of testosterone secretion. J Theor Biol 123:239–250

    Article  Google Scholar 

  3. Churilov AN, Medvedev A (2014) An impulse-to-impulse discrete-time mapping for a time-delay impulsive system. Automatica 50(8):2187–2190

    Article  MathSciNet  MATH  Google Scholar 

  4. Churilov AN, Medvedev A, Mattsson P (2012) Periodical solutions in a time-delay model of endocrine regulation by pulse-modulated feedback. In: Proceedings of the 51st IEEE conference on decision control, Maui, Hawaii, pp 362–367

  5. Churilov AN, Medvedev A, Mattsson P (2013) Finite-dimensional reducibility of time-delay systems under pulse-modulated feedback. In: Proceedings of the 52nd IEEE conference on decision control, Florence, Italy, pp 2078–2083

  6. Churilov AN, Medvedev A, Mattsson P (2014) Discrete-time modeling of a hereditary impulsive feedback system. In: Proceedings of the 53rd IEEE conference on decision control. Los Angeles, California, pp 765–770

  7. Churilov AN, Medvedev A, Mattsson P (2014) Periodical solutions in a pulse-modulated model of endocrine regulation with time-delay. IEEE Trans Autom Control 59(3):728–733

    Article  MathSciNet  Google Scholar 

  8. Churilov AN, Medvedev A, Shepeljavyi AI (2009) Mathematical model of non-basal testosterone regulation in the male by pulse modulated feedback. Automatica 45(1):78–85

    Article  MathSciNet  MATH  Google Scholar 

  9. Das P, Roy AB, Das A (1994) Stability and oscillations of a negative feedback delay model for the control of testosterone secretion. BioSystems 32(1):61–69

    Article  Google Scholar 

  10. Efimov D, Fradkov A (2007) Oscillatority conditions for nonlinear systems with delay. J Appl Math. Article ID 72561

  11. Enciso G, Sontag ED (2004) On the stability of a model of testosterone dynamics. J Math Biol 49:627–634

    Article  MathSciNet  MATH  Google Scholar 

  12. Evans WS, Farhy LS, Johnson ML (2009) Biomathematical modeling of pulsatile hormone secretion: a historical perspective. In: Johnson ML, Brand L (eds) Methods enzymol.: computer methods, volume A, vol 454, pp 345–366

  13. Fargue D (1974) Reductibilite des systemes hereditaires. Int J Non-Linear Mech 9(5):331–338

    Article  MathSciNet  MATH  Google Scholar 

  14. Fargue DM (1973) Réducibilité des systèmes héréditaires a des systèmes dynamiques. C R Acad Sci Paris Ser B 277:443–471

    MathSciNet  Google Scholar 

  15. Goodwin BC (1965) Oscillatory behavior in enzymatic control processes. In: Weber G (ed) Advances of enzime regulation, vol 3. Pergamon, Oxford, pp 425–438

    Google Scholar 

  16. Goodwin BC (1966) An intrainment model for timed enzyme synthesis in bacteria. Nature 209(5022):479–481

    Article  Google Scholar 

  17. Griffith J (1968) Mathematics of cellular control processes. I. Negative feedback to one gene. J Math Biol 20:202–208

    Google Scholar 

  18. Gu K, Kharitonov VL, Chen J (2003) Stability of time-delay systems. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  19. Haddad WM, Chellaboina V, Nersesov SG (2006) Impulsive and hybrid dynamical systems: stability, dissipativity, and control. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  20. Keenan DM, Sun W, Veldhuis JD (2000) A stochastic biomathematical model of the male reproductive control system. SIAM J Appl Math 61(3):934–965

    Article  MathSciNet  MATH  Google Scholar 

  21. Keenan DM, Veldhuis JD (1998) A biomathematical model of time-delayed feedback in the human male hypothalamic–pituitary–Leydig cell axis. Am J Physiol Endoc Metab 275(1):E157–E176

    Google Scholar 

  22. Keenan DM, Veldhuis JD (2001) Hypothesis testing of the aging male gonadal axis via a biomathematical construct. Am J Physiol Reg Integr Comput Physiol 280:R1755–R1771

    Google Scholar 

  23. Keenan DM, Wang X, Pincus SM, Veldhuis JD (2012) Modelling the nonlinear time dynamics of multidimensional hormonal systems. J Time Ser Anal 33:779–796

    Article  MathSciNet  MATH  Google Scholar 

  24. Kuang Y (1993) Delay differential equations with applications in population dynamics. Academic Press, San Diego

    MATH  Google Scholar 

  25. Lakshmikantham V, Bainov DD, Simeonov PS (1989) Theory of impulsive differential equations. World Scientific, Singapore

    Book  MATH  Google Scholar 

  26. Lakshmikantham V, Rama Mohana Rao M (1995) Theory of integro-differential equations. Gordon and Breach, Amsterdam

    MATH  Google Scholar 

  27. MacDonald N (1978) Time lags in biological models. Springer, Berlin

    Book  MATH  Google Scholar 

  28. MacDonald N (1989) Biological delay systems: linear stability theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  29. Mattsson P, Medvedev A (2013) Modeling of testosterone regulation by pulse-modulated feedback: an experimental data study. In: 2013 international symposium on computer models life science. AIP conference proceedings, vol 1559, pp 333–342. AIP Publishing, Melville

  30. Mattsson P, Medvedev A (2015) Modeling of testosterone regulation by pulse-modulated feedback. In: Advances in experimental medicine and biology, vol 823. Springer, Berlin, pp 23–40

  31. Mukhopadhyay B, Bhattacharyya R (2004) A delayed mathematical model for testosterone secretion with feedback control mechanism. Int J Math Sci 2004(3):105–115

    Article  MathSciNet  MATH  Google Scholar 

  32. Murray JD (2002) Mathematical biology, I: an introduction, 3rd edn. Springer, New York

    MATH  Google Scholar 

  33. Ren H (2004) Stability analysis of a simplified model for the control of testosterone secretion. Discrete Contin Dynam Syst Ser B 4(3):729–738

    Article  MathSciNet  MATH  Google Scholar 

  34. Ruan S, Wei J (2001) On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion. IMA J Math Appl Med Biol 18(1):41–52

    Article  MATH  Google Scholar 

  35. Samoilenko AM, Perestyuk NA (1995) Impulsive differential equations. World Scientific, Singapore

    MATH  Google Scholar 

  36. Shampine L, Thompson S (2001) Solving DDEs in MATLAB. Appl Numer Math 37:441–458

    Article  MathSciNet  MATH  Google Scholar 

  37. Smith H (2011) An introduction to delay differential equations with applications to the life sciences. Springer, Berlin

    Book  MATH  Google Scholar 

  38. Smith WR (1980) Hypothalamic regulation of pituitary secretion of lutheinizing hormone—II Feedback control of gonadotropin secretion. Bull Math Biol 42:57–78

    MATH  Google Scholar 

  39. Smith WR (1983) Qualitative mathematical models of endocrine systems. Am J Physiol 245(4):R473–R477

    Google Scholar 

  40. Stamov GT (2012) Almost periodic solutions of impulsive differential equations. Springer, Berlin

    Book  MATH  Google Scholar 

  41. Stamova I (2009) Stability analysis of impulsive functional differential equations. Walter de Gruyter, Berlin

    Book  MATH  Google Scholar 

  42. Terrell WJ (2009) Stability and stabilization: an introduction. Princeton University Press, Princeton

    MATH  Google Scholar 

  43. Tyson JJ (2002) Biochemical oscillations. Springer, New York

    Google Scholar 

  44. Tyson JJ, Othmer HG (1978) The dynamics of feedback control circuits in biochemical pathways. Prog Theor Biol 5(1):1–62

    Article  MATH  Google Scholar 

  45. Wolkowicz GSK, Xia H, Ruan S (1997) Competition in the chemostat: a distributed delay model and its global asymptotic behavior. SIAM J Appl Math 57(5):1281–1310

    Article  MathSciNet  MATH  Google Scholar 

  46. Woller A, Gonze D, Erneux T (2014) The Goodwin model revisited: Hopf bifurcation, limit-cycle, and periodic entrainment. Phys. Biol 11(4). Article Number: 045002

  47. Wu FCW, Irby DC, Clarce IJ, Cummins JT, de Kretse DM (1987) Effects of gonadotropin-releasing hormone pulse–frequency modulation on luteinizing hormone, follicle-stimulating hormone and testosterone in hypothalamo/pituitary-disconnected rams. Biol Reprod 37(10):501–505

    Article  Google Scholar 

  48. Yang T (2001) Impulsive control theory. Springer, Berlin

    MATH  Google Scholar 

  49. Zhusubaliyev Z, Mosekilde E, Churilov A, Medvedev A (2015) Multistability and hidden attractors in an impulsive Goodwin oscillator with time delay. Eur Phys J Spec Top 224:1519–1539

    Article  Google Scholar 

  50. Zhusubaliyev ZT, Churilov AN, Medvedev A (2012) Bifurcation phenomena in an impulsive model of non-basal testosterone regulation. Chaos 22(1):013,121–1–013,121–11

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Medvedev.

Additional information

A. N. Churilov acknowledges Russian Foundation for Basic Research for Grant 14-01-00107-a and Saint Petersburg State University for a research Grant 6.38.230.2015. A. Medevedev was in part financed by the European Research Council, Advanced Grant 247035 (SysTEAM) and Grant 2012-3153 from the Swedish Research Council.

Proof of Theorem 1

Proof of Theorem 1

The following lemma plays a key role in the proof. Let \(\widetilde{K}(t)\) be a matrix valued function of a scalar argument t:

$$\begin{aligned} \widetilde{K}(t) = \int _t^h K(s) \mathrm {e}^{A_0(t-s)}\mathrm{d}s. \end{aligned}$$

Lemma 2

Let \(t_n<t<t_{n+1}\) where \(n\ge 2\). Then any solution x(t) of (18), (19) satisfies the ordinary differential equation

$$\begin{aligned} x' =Dx-(D-A_0)\eta (t), \end{aligned}$$
(35)

where the vector-valued function \(\eta (t)\) is defined as follows:

Case (i) \(T_n>h\), \(T_{n-1}>h\). Then

$$\begin{aligned} \eta (t)={\left\{ \begin{array}{ll} \lambda _n \mathrm {e}^{A_0(t-t_n)}B, &{}t_n<t\le t_n+\tau , \\ \lambda _n \widetilde{K}(t-t_n)\,B_0, &{} t_n+\tau <t\le t_n+h, \\ 0, &{} t_n+h<t< t_{n+1}. \end{array}\right. } \end{aligned}$$

Case (ii) \(T_n<h\), \(T_{n-1}>h\). Then

$$\begin{aligned} \eta (t)={\left\{ \begin{array}{ll} \lambda _n \mathrm {e}^{A_0(t-t_n)}B, &{}t_n<t\le t_n+\tau , \\ \lambda _n \widetilde{K}(t-t_n)\,B_0, &{} t_n+\tau <t< t_{n+1}. \end{array}\right. } \end{aligned}$$

Case (iii) \(T_n<h\), \(T_{n-1}<h\). Then

$$\begin{aligned} \eta (t)={\left\{ \begin{array}{ll} \lambda _n \mathrm {e}^{A_0(t-t_n)}B + \lambda _{n-1} \widetilde{K}(t-t_{n-1})\,B_0, &{}t_n<t\le t_{n-1}+h, \\ \lambda _n \mathrm {e}^{A_0(t-t_n)}B, &{}t_{n-1}+h<t\le t_n+\tau , \\ \lambda _n \widetilde{K}(t-t_n)\,B_0, &{} t_n+\tau <t< t_{n+1}. \end{array}\right. } \end{aligned}$$

Case (iv) \(T_n>h\), \(T_{n-1}<h\). Then

$$\begin{aligned} \eta (t)={\left\{ \begin{array}{ll} \lambda _n \mathrm {e}^{A_0(t-t_n)}B + \lambda _{n-1} \widetilde{K}(t-t_{n-1})\,B_0, &{}t_n<t\le t_{n-1}+h, \\ \lambda _n \mathrm {e}^{A_0(t-t_n)}B, &{}t_{n-1}+h<t\le t_n+\tau , \\ \lambda _n \widetilde{K}(t-t_n)\,B_0, &{} t_n+\tau <t\le t_n+h, \\ 0, &{} t_n+h<t< t_{n+1}. \end{array}\right. } \end{aligned}$$

Proof of Lemma 2

From (13), one gets

$$\begin{aligned} A_1=(D-A_0) {\mathfrak {K}}(A_0)^{-1}. \end{aligned}$$

Now (6) can be rewritten as

$$\begin{aligned} x' =Dx+(D-A_0)\left( {\mathfrak {K}}(A_0)^{-1} x_d - x\right) . \end{aligned}$$
(36)

Without loss of generality (cf. Lemma 1), let the continuous part of (18) be readily given in the form of (14). Let also the matrix B be partitioned as

$$\begin{aligned} B = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \end{aligned}$$

where the dimensions of the vectors \(B_1\), \(B_2\) correspond to those of u, v, respectively. The matrix D can be represented as (16) and

$$\begin{aligned} D-A_0 = \begin{bmatrix} 0&0\\ \bar{W}{\mathfrak {K}}(U)&0 \end{bmatrix}. \end{aligned}$$
(37)

It follows from (14) that

$$\begin{aligned} {\mathfrak {K}}(A_0) = \begin{bmatrix} {\mathfrak {K}}(U)&0\\ *&* \end{bmatrix}, \qquad {\mathfrak {K}}(A_0)^{-1}x_d-x = \begin{bmatrix} {\mathfrak {K}}(U)^{-1}u_d-u \\ * \end{bmatrix}, \end{aligned}$$

where asterisks stand for any matrix blocks of appropriate size. Hence (36) and (37) yield

$$\begin{aligned} x' =Dx-(D-A_0)\eta (t), \end{aligned}$$
(38)

where

$$\begin{aligned} \eta (t)=\begin{bmatrix} u(t)-{\mathfrak {K}}(U)^{-1} u_d(t) \\ * \end{bmatrix}, \end{aligned}$$

\(u_d(t)\) is defined by (15) and \(*\) is any column of a suitable size. Equation (38) holds for any time interval where the function x(t) is smooth, i.e., in any interval that does not contain the points \(t_0,t_1,\ldots \).

Define the time intervals

$$\begin{aligned} L_k=\{t\,: \, t_k<t<t_{k+1}\},\quad k=0,1,\ldots . \end{aligned}$$

For brevity, denote \(u_k^- = u(t_k^-)\), \(u_k^+ = u(t_k^+)\). One has \(u_k^+= u_k^- +\lambda _k B_1\) and

$$\begin{aligned} u(t) ={\left\{ \begin{array}{ll} \mathrm {e}^{U(t-t_k)}u_k^+, &{}t\in L_k, \\ \mathrm {e}^{U(t-t_k)}u_k^-, &{}t\in L_{k-1}. \end{array}\right. } \end{aligned}$$
(39)

Suppose \(t\in L_n\), \(n\ge 2\). To prove Lemma 2, it suffices to show that \(\eta (t)\) can be chosen as

$$\begin{aligned} \eta (t) = {\left\{ \begin{array}{ll} 0 &{}\text{ if }\quad t-h\in L_n,\; t-\tau \in L_n; \\ \lambda _n \mathrm {e}^{A_0(t-t_n)}B &{}\text{ if }\quad t-h\in L_{n-1},\; t-\tau \in L_{n-1}; \\ \lambda _{n-1} \widetilde{K}(t-t_{n-1})\,B_0 &{}\text{ if }\quad t-h\in L_{n-1},\; t-\tau \in L_n; \\ \lambda _n \mathrm {e}^{A_0(t-t_n)}B+ \lambda _{n-1} \widetilde{K}(t-t_{n-1})\,B_0 &{}\text{ if }\quad t-h\in L_{n-2},\; t-\tau \in L_{n-1}. \end{array}\right. } \end{aligned}$$

(a) Let \(t-h\in L_n\), \(t-\tau \in L_n\). Since \(t\in L_n\), (39) implies \(u(t) = \mathrm {e}^{U(t-t_n)} u_n^+\). Moreover, since \(t-s\in L_n\) for \(\tau \le s\le h\) and from (39), one obtains

$$\begin{aligned} u_d(t)=\int _\tau ^h K(s)\,\mathrm {e}^{U(t-t_n-s)}\,\mathrm{d}s\, u_n^+ = {\mathfrak {K}}(U) u(t). \end{aligned}$$

Hence x(t) is a solution of (8) and \(\eta (t)\equiv 0\) is justified.

(b) Let \(t-h\in L_{n-1}\), \(t-\tau \in L_{n-1}\). Hence \(t-s\in L_{n-1}\) for \(\tau \le s\le h\) and making use (39) yields

$$\begin{aligned} u_d(t) = \int _\tau ^h K(s)\,\mathrm {e}^{U(t-s-t_n)}\,\mathrm{d}s\, u_n^- = {\mathfrak {K}}(U) \mathrm {e}^{U(t-t_n)} u_n^-. \end{aligned}$$

Since \(u_n^- = u_n^+ -\lambda _n B_1\), one gets

$$\begin{aligned} \mathrm {e}^{U(t-t_n)} u_n^- = u(t) -\lambda _n \mathrm {e}^{U(t-t_n)} B_1. \end{aligned}$$
(40)

Thus

$$\begin{aligned} u(t)-{\mathfrak {K}}(U)^{-1} u_d(t) = \lambda _n \mathrm {e}^{U(t-t_n)} B_1. \end{aligned}$$

Since

$$\begin{aligned} \mathrm {e}^{A_0t}B=\begin{bmatrix} \mathrm {e}^{Ut}&0\\ *&* \end{bmatrix} \begin{bmatrix} B_1\\ B_2 \end{bmatrix}= \begin{bmatrix} \mathrm {e}^{Ut}B_1 \\ * \end{bmatrix}, \end{aligned}$$

where asterisks stand for some blocks, \(\eta (t)= \lambda _n \mathrm {e}^{A_0(t-t_n)} B\) can be taken in (38).

(c) Let \(t-h\in L_{n-1}\), \(t-\tau \in L_n\). Then \(t-h<t_n<t-\tau \), so \(t-s\in L_n\) if \(\tau <s<t-t_n\) and \(t-s\in L_{n-1}\) if \(t-t_n<s<h\). Hence

$$\begin{aligned} u(t-s)={\left\{ \begin{array}{ll} \mathrm {e}^{U(t-t_n-s)} u_n^+ &{}\text{ if }\quad \tau < s < t -t_n. \\ \mathrm {e}^{U(t-t_n-s)} u_n^- &{}\text{ if }\quad t-t_n< s <h. \end{array}\right. } \end{aligned}$$

Then

$$\begin{aligned} u_d(t) = \int _{\tau }^{t-t_n} K(s)\,\mathrm {e}^{U(t-t_n-s)}\,\mathrm{d}s\, u_n^+ +\int _{t-t_n}^h K(s)\,\mathrm {e}^{U(t-t_n-s)}\,\mathrm{d}s\, u_n^- . \end{aligned}$$

Using (40), rewrite the previous line as

$$\begin{aligned} u_d(t)= {\mathfrak {K}}(U)u(t) -\lambda _n \int _{t-t_n}^h K(s)\,\mathrm {e}^{U(t-t_n-s)}\,\mathrm{d}s\,B_1. \end{aligned}$$

leading to

$$\begin{aligned} u(t)- {\mathfrak {K}}(U)^{-1}u_d(t) = \lambda _n {\mathfrak {K}}(U)^{-1} \int _{t-t_n}^h K(s)\mathrm {e}^{U(t-t_n-s)} \mathrm{d}s B_1. \end{aligned}$$

Thus \(\eta (t)\) in (38) can be chosen as

$$\begin{aligned} \eta (t)=\lambda _n {\mathfrak {K}}(A_0)^{-1} \int _{t-t_n}^h K(s)\mathrm {e}^{A_0(t-t_n-s)} \mathrm{d}s B= \lambda _n \widetilde{K}(t-t_n) B_0. \end{aligned}$$

(d) Let \(t-h\in L_{n-2}\), \(t-\tau \in L_{n-1}\). Hence \(t-h<t_{n-1}<t-\tau \), so \(t-s\in L_{n-1}\) if \(\tau <s<t-t_{n-1}\) and \(t-s\in L_{n-2}\) if \(t-t_{n-1}<s<h\). Hence

$$\begin{aligned} u_d(t) = \int _{\tau }^{t-t_{n-1}} K(s)\mathrm {e}^{U(t-t_n-s)}\, \mathrm{d}s\, u_n^- + \int _{t-t_{n-1}}^h K(s)\mathrm {e}^{U(t-t_{n-1}-s)}\, \mathrm{d}s\, u_{n-1}^-. \end{aligned}$$

Since

$$\begin{aligned} u^+_{n-1}= u^-_{n-1} +\lambda _{n-1} B_1, \quad u^-_n = \mathrm {e}^{UT_{n-1}} u^+_{n-1}, \end{aligned}$$

it can be concluded that

$$\begin{aligned} u^+_{n-1}= \mathrm {e}^{-UT_{n-1}} u^-_n - \lambda _{n-1} B_1 \end{aligned}$$

and hence

$$\begin{aligned} u_d(t) = {\mathfrak {K}}(U) \mathrm {e}^{U(t-t_n)} u_n^- - \lambda _{n-1} \int _{t-t_{n-1}}^h K(s)\mathrm {e}^{U(t-t_{n-1}-s)}\, \mathrm{d}s\, B_1. \end{aligned}$$

It is deduced from (40) that

$$\begin{aligned} u(t)- {\mathfrak {K}}(U)^{-1}u_d(t)= \lambda _n \mathrm {e}^{U(t-t_n)} B_1 +\lambda _{n-1} {\mathfrak {K}}(U)^{-1} \int _{t-t_{n-1}}^h K(s)\mathrm {e}^{U(t-s-t_{n-1})}\, \mathrm{d}s\, B_1. \end{aligned}$$

Thus

$$\begin{aligned} \eta (t)=\lambda _n \mathrm {e}^{A_0(t-t_n)} B + \lambda _{n-1} \widetilde{K}(t-t_{n-1})\, B_0. \end{aligned}$$

can be taken in (38),

The proof of Lemma 2 is complete. The corollary below follows immediately. \(\square \)

Corollary 1

The function \(\eta (t)\) in Lemma 2 is continuous in \((t_n,t_{n+1})\) and piecewise smooth. For \(n\ge 2\) in its intervals of smoothness \(\eta (t)\) satisfies the differential equation

$$\begin{aligned} \eta '(t)=A_0\eta (t)-H(t), \end{aligned}$$

where H(t) is defined as follows

Case (i) \(T_n>h\), \(T_{n-1}>h\). Then

$$\begin{aligned} H(t) ={\left\{ \begin{array}{ll} 0, &{}t_n<t<t_n+\tau , \\ \lambda _n K(t-t_n) B_0, &{}t_n+\tau <t<t_n+h, \\ 0, &{} t_n+h<t<t_{n+1}. \end{array}\right. } \end{aligned}$$

Case (ii) \(T_n<h\), \(T_{n-1}>h\). Then

$$\begin{aligned} H(t) ={\left\{ \begin{array}{ll} 0, &{}t_n<t<t_n+\tau , \\ \lambda _n K(t-t_n) B_0, &{}t_n+\tau <t<t_{n+1}. \end{array}\right. } \end{aligned}$$

Case (iii) \(T_n<h\), \(T_{n-1}<h\). Then

$$\begin{aligned} H(t) ={\left\{ \begin{array}{ll} \lambda _{n-1} K(t-t_{n-1}) B_0, &{}t_n<t<t_{n-1}+h, \\ 0, &{}t_{n-1}+h<t<t_n+\tau , \\ \lambda _n K(t-t_n) B_0, &{}t_n+\tau <t<t_{n+1}. \end{array}\right. } \end{aligned}$$

Case (iv) \(T_n>h\), \(T_{n-1}<h\). Then

$$\begin{aligned} H(t) ={\left\{ \begin{array}{ll} \lambda _{n-1} K(t-t_{n-1}) B_0, &{}t_n+\tau <t<t_{n-1}+h, \\ 0, &{}t_{n-1}+h<t<t_n+\tau , \\ \lambda _n K(t-t_n) B_0, &{}t_n+\tau <t<t_n+h, \\ 0, &{} t_n+h<t<t_{n+1}. \end{array}\right. } \end{aligned}$$

Now all the prerequisites for the proof of Theorem 2 are in place.

For \(t_n<t< t_{n+1}\), \(n\ge 2\), introduce the function \(z(t)=x(t)-\eta (t)\), where x(t) is a solution of (18), (19). From (35) and Corollary 1, on those subintervals of \((t_n,t_{n+1})\), where \(\eta (t)\) is smooth, it applies that

$$\begin{aligned} z'(t)=Dz(t)+H(t). \end{aligned}$$
(41)

Since \(x(t^-_{n+1})=\bar{x}_{n+1}\), \(x(t^+_n)=\bar{x}_n+\lambda _n B\), from (41) it follows

$$\begin{aligned} \bar{x}_{n+1} = \eta (t^-_{n+1})+ \mathrm {e}^{D T_n} (\bar{x}_n +\lambda _n B - \eta (t^+_n)) +\int _{t_n}^{t_{n+1}} \mathrm {e}^{D(t_{n+1}-s)} H(s)\, \mathrm{d}s. \end{aligned}$$
(42)

Consider four previously defined cases (i)–(iv).

Case (i) From Lemma 2, the following boundary conditions are obtained

$$\begin{aligned} \eta (t_n^+) = \lambda _n B, \quad \eta (t_{n+1}^-)=0. \end{aligned}$$

Since

$$\begin{aligned} \int _{t_n+\tau }^{t_n+h} K(s-t_n)\mathrm {e}^{D(t_{n+1}-s)} \, \mathrm{d}s= \int _{\tau }^h K(s) \mathrm {e}^{D(T_n-s)} \, \mathrm{d}s = \mathrm {e}^{DT_n} {\mathfrak {K}}(D), \end{aligned}$$
(43)

(42) takes the form

$$\begin{aligned} \bar{x}_{n+1} = \mathrm {e}^{D T_n} \bar{x}_n +\lambda _n\mathrm {e}^{DT_n}{\mathfrak {K}}(D) B_0=Q_n. \end{aligned}$$

This implies the claim of Theorem 2 for case (i).

Case (ii) The boundary conditions are

$$\begin{aligned} \eta (t_n^+) = \lambda _n B, \quad \eta (t_{n+1}^-)= \lambda _n \widetilde{K}(T_n)\, B_0. \end{aligned}$$

Then (42) takes the form

$$\begin{aligned} \bar{x}_{n+1} = \mathrm {e}^{D T_n} \bar{x}_n + \lambda _n \int _{T_n}^h K(s) \mathrm {e}^{A_0(T_n-s)} \mathrm{d}s\, B_0 +\lambda _n \int _{\tau }^{T_n} K(s) \mathrm {e}^{D(T_n-s)} \mathrm{d}s\, B_0. \end{aligned}$$

Since

$$\begin{aligned} \int _{\tau }^{T_n} K(s) \mathrm {e}^{D(T_n-s)} \mathrm{d}s= & {} \int _{\tau }^h K(s) \mathrm {e}^{D(T_n-s)} \mathrm{d}s - \int _{T_n}^h K(s) \mathrm {e}^{D(T_n-s)} \mathrm{d}s \\= & {} \mathrm {e}^{DT_n} {\mathfrak {K}}(D)-\int _{T_n}^h K(s) \mathrm {e}^{D(T_n-s)} \mathrm{d}s, \end{aligned}$$

one finally arrives at

$$\begin{aligned} \bar{x}_{n+1} = \mathrm {e}^{D T_n} \bar{x}_n + \lambda _n\mathrm {e}^{D T_n}{\mathfrak {K}}(D)B_0- \lambda _n \int _{T_n}^h K(s) G(T_n-s)\, \mathrm{d}s, \end{aligned}$$

where G(t) is defined by (22). Since \(T_n={\varPhi }(C\bar{x}_n)\) and \(\lambda _n=F(C\bar{x}_n)\),

$$\begin{aligned} \bar{x}_{n+1}=Q_n - \lambda _n R(T_n). \end{aligned}$$

Case (iii) The boundary conditions are

$$\begin{aligned} \eta (t_n^+) = \lambda _n B+ \lambda _{n-1} \widetilde{K}(T_{n-1})\, B_0, \quad \eta (t_{n+1}^-)= \lambda _n \widetilde{K}(T_n)\, B_0. \end{aligned}$$

Since

$$\begin{aligned} \int _{t_n}^{t_{n-1}+h} K(s-t_{n-1})\mathrm {e}^{D(t_{n+1}-s)}\,\mathrm{d}s= \mathrm {e}^{DT_n} \int _{T_{n-1}}^h K(s)\mathrm {e}^{D(T_{n-1}-s)}\,\mathrm{d}s \end{aligned}$$
(44)

and

$$\begin{aligned} \int _{t_n+\tau }^{t_{n+1}} K(s-t_n)\mathrm {e}^{D(t_{n+1}-s)}\,\mathrm{d}s= & {} \mathrm {e}^{DT_n} \int _{\tau }^{T_n} K(s) \mathrm {e}^{-Ds} \mathrm{d}s \\= & {} \mathrm {e}^{DT_n} {\mathfrak {K}}(D) - \int _{T_n}^h K(s) \mathrm {e}^{D(T_n-s)} \mathrm{d}s, \end{aligned}$$

equality (42) takes the form

$$\begin{aligned} \bar{x}_{n+1}= & {} \mathrm {e}^{D T_n} \bar{x}_n + \lambda _n \mathrm {e}^{DT_n} {\mathfrak {K}}(D) B_0 \\&-\lambda _n \int _{T_n}^h K(s)G(T_n-s)\,\mathrm{d}s + \lambda _{n-1}\mathrm {e}^{DT_n} \int _{T_{n-1}}^h K(s)G(T_{n-1}-s)\,\mathrm{d}s. \end{aligned}$$

This implies

$$\begin{aligned} \bar{x}_{n+1}=Q_n-\lambda _nR(T_n)+ \lambda _{n-1}\mathrm {e}^{DT_n}R(T_{n-1}). \end{aligned}$$

Case (iv) The boundary conditions are

$$\begin{aligned} \eta (t_n^+) = \lambda _n B+ \lambda _{n-1} \widetilde{K}(T_{n-1})\, B_0, \quad \eta (t_{n+1}^-)= 0. \end{aligned}$$

Using (43), (44) results in

$$\begin{aligned} \bar{x}_{n+1}= & {} \mathrm {e}^{D T_n} \bar{x}_n + \lambda _n \mathrm {e}^{DT_n} {\mathfrak {K}}(D) B_0 \\&+\lambda _{n-1}\mathrm {e}^{DT_n} \int _{T_{n-1}}^h K(s)G(T_{n-1}-s)\,\mathrm{d}s. \end{aligned}$$

Hence

$$\begin{aligned} \bar{x}_{n+1}=Q_n+ \lambda _{n-1}\mathrm {e}^{DT_n}R(T_{n-1}). \end{aligned}$$

The proof of Theorem 2 is complete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Churilov, A.N., Medvedev, A. Discrete-time map for an impulsive Goodwin oscillator with a distributed delay. Math. Control Signals Syst. 28, 9 (2016). https://doi.org/10.1007/s00498-016-0160-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00498-016-0160-y

Keywords

Navigation