Skip to main content
Log in

Counting critical formations on the circle: algebraic–geometric and Morse-theoretic bounds

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

In this work, we analyze the critical points of potential functions on the torus arising in decentralized formation shape control of multiagent systems on the unit circle. A rotation symmetry of the potential function allows to reduce the analysis to a reduced function on a lower-dimensional torus. We show that these reduced potential functions are generically Morse functions. Lower bounds on the number of critical points of the reduced potential are obtained by Morse-theoretic arguments. For trees, precise information on the number of critical points is obtained. We use algebraic–geometric methods to determine upper bounds on the number of critical points of the reduced potentials. Our approach is applicable both to standard formation control potential functions and potential functions arising from the Kuramoto model of coupled oscillators with identical natural frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the sense of complex analysis.

References

  1. Absil PA, Kurdyka K (2006) On the stable equilibrium points of gradient systems. Syst Control Lett 55(7):573–577

    Article  MathSciNet  MATH  Google Scholar 

  2. Acebrón J, Bonilla L, Vicente C, Ritort F, Spigler R (2005) The Kuramoto model: a simple paradigm for synchronization phenomena. Rev Modern Phys 77:137–185

    Article  Google Scholar 

  3. Anderson BDO, Yu C, Dasgupta S, Summers TH (2010) Controlling four agent formations. In: 2nd IFAC workshop on distributed estimation and control in networked systems. Annecy, France, pp 139-144

  4. Anderson BDO (2011) Morse theory and formation control. In: Proceedings of the 19th Mediterranean conference on control and automation. Corfu, Greece, pp 656-661

  5. Anderson BDO, Helmke U (2014) Counting critical formations on the line. SIAM J Control Optim 52:219–242

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernstein DN (1975) The number of roots of a system of equations. Funct Anal Appl 9:183–185

    Article  MathSciNet  MATH  Google Scholar 

  7. Dimarogonas DV, Johansson KH (2008) On the stability of distance-based formation control. In: Proceedings of the 47th IEEE conference on decision and control. Cancun, Mexico, pp 1200-1205

  8. Draisma J, Horobeţ E, Ottaviani G, Sturmfels B, Thomas RR (2016) The Euclidean distance degree of an algebraic variety. Found Comput Math 16:99–149

    Article  MathSciNet  MATH  Google Scholar 

  9. Gao T, Li TY, Wu M (2005) Algorithm 846: MixedVol: a software package for mixed-volume computation. ACM Trans Math Softw 31(4):555-560. http://doi.acm.org/10.1145/1114268.1114274 ( Online)

  10. Gazi V, Passino KM (2004) A class of attraction/replusion functions for stable swarm aggregations. Int J Control 77(18):1567–1579

    Article  MathSciNet  MATH  Google Scholar 

  11. Greenberg MJ, Harper JR (1981) Algebraic topology: a first course. Benjamin/Cummings, Reading, Massachusetts

  12. Heintz J (1983) Definability and fast quantifier elimination in algebraically closed fields. Theor Comput Sci 24:239–277

    Article  MathSciNet  MATH  Google Scholar 

  13. Helmke U, Moore J (1994) Optimization and dynamical systems. Springer, Berlin

    Book  MATH  Google Scholar 

  14. Hirsch MW (1976) Differential topology. Springer, Berlin

    Book  MATH  Google Scholar 

  15. Horn RA, Johnson CR (2013) Matrix analysis, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  16. James IM (1978) On category, in the sense of Lusternik–Schnirelmann. Topology 17:331–348

    Article  MathSciNet  MATH  Google Scholar 

  17. James IM (1995) Lusternik–Schnirelmann category. In: James IM (ed) Handbook of algebraic topology. Elsevier Science B.V, Amsterdam, pp 1293–1310

    Chapter  Google Scholar 

  18. Jungnickel D (2008) Graphs, networks and algorithms, 3rd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  19. Khovanskiĭ AG (1978) Newton polyhedra, and the genus of complete intersections. Funct Anal Appl 12(1):38–46

    Article  MathSciNet  Google Scholar 

  20. Krick L, Broucke ME, Francis B (2009) Stabilization of infinitesimally rigid formation of multi-robot networks. Int J Control 82:423–439

    Article  MathSciNet  MATH  Google Scholar 

  21. Kurdyka K, Mostowski T, Parusiński A (2000) Proof of the gradient conjecture of R. Thom. Ann Math 152(3):763–792

    Article  MathSciNet  MATH  Google Scholar 

  22. Kušnirenko AG (1976) Newton polyhedra and Bezout’s theorem. Funct Anal Appl 10(3):223–235

    Google Scholar 

  23. Lageman C, Helmke U (2013) Critical points of potential functions for circular formation control. In: 4th IFAC workshop on distributed estimation and control in networked systems. Koblenz, Germany, pp 31-37

  24. Lageman C, Helmke U, Anderson BDO (2015) Formation control on lines, circles and ellipses: genericity results and Morse theoretic ideas. In: Proceedings of the 54th IEEE conference on decision and control, Osaka, Japan

  25. Łojasiewicz S (1984) Sur les trajectoires du gradient d’une fonction analytique. Geometry seminars., 1982-1983 (Bologna, 1982/1983)Univ. Stud. Bologna, Bologna, pp 115-117

  26. Marker D (2002) Model theory: an introduction. Springer, New York

    MATH  Google Scholar 

  27. Olfati-Saber R, Murray R (2002) Distributed cooperative control of multiple vehicle formations using structural potential functions. In: Proceedings of the 15th IFAC world congress, Barcelona, Spain

  28. Park M-C, Sun Z, Anderson BDO, Ahn H-S (2014) Stability analysis on four agent tetrahedral formations. In: Proceedings of the 53rd IEEE conference on decision and control. Los Angeles, California, USA, pp 631-636

  29. Range RM (1986) Holomorphic functions and integral representations in several complex variables. Spinger, New York

    Book  MATH  Google Scholar 

  30. Schneider R (2014) Convex bodies: the Brunn–Minskowski theory, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  31. Shafarevich IR (1994) Basic algebraic geometry 1. Spinger, Berlin

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lageman.

Additional information

This work has been supported by the Grants HE 1858/13-1, HE 1858/14-1 from the German Research Foundation and by Grant 57139792 of the DAAD-ARC Go8 Australian–German Collaboration Project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lageman, C., Helmke, U. Counting critical formations on the circle: algebraic–geometric and Morse-theoretic bounds. Math. Control Signals Syst. 28, 11 (2016). https://doi.org/10.1007/s00498-016-0163-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00498-016-0163-8

Keywords

Navigation