Skip to main content

Advertisement

Log in

iISS and ISS dissipation inequalities: preservation and interconnection by scaling

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

In analysis and design of nonlinear dynamical systems, (nonlinear) scaling of Lyapunov functions has been a central idea. This paper proposes a set of tools to make use of such scalings and illustrates their benefits in constructing Lyapunov functions for interconnected nonlinear systems. First, the essence of some scaling techniques used extensively in the literature is reformulated in view of preservation of dissipation inequalities of integral input-to-state stability (iISS) and input-to-state stability (ISS). The iISS small-gain theorem is revisited from this viewpoint. Preservation of ISS dissipation inequalities is shown to not always be necessary, while preserving iISS which is weaker than ISS is convenient. By establishing relationships between the Legendre–Fenchel transform and the reformulated scaling techniques, this paper proposes a way to construct less complicated Lyapunov functions for interconnected systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The decay rate \({x^2}/{(1+x^2)}\) in (2) is not of class \(\mathcal {K}_\infty \) (i.e., the decay rate does not approach infinity as x approaches infinity), although the formal definition in [37, Definition 2.2] employs \(\mathcal {K}_\infty \). However, as indicated in [37] and verified easily, a positive definite decay rate, e.g., (2), can imply ISS.

  2. in the sense of [37, Definition 2.2], i.e., an implication-form characterization

  3. The use of \(\mu ^\prime (s)=b\) is sufficient for verifying stability of interconnections of components admitting linear gains [5].

  4. The condition \(V(x)\ge \alpha ^{\ominus }\circ (\mathbf {Id}+\omega )\circ \sigma (|w|)\) gives a hypothesizing clause of the implication-form characterization of ISS from (9).

  5. It is assumed in [23] that \(\mu ^\prime \) is strictly increasing. However, as demonstrated in this section, \(\mu ^\prime \) can be taken to be non-decreasing.

  6. For the no-gap case where only (10) instead of (38) is fulfilled by both subsystems, see [14].

  7. It is not necessary to use \(\tau =1.1\). There exists \(\tau \) satisfying (79) if and only if \(\varphi >21.419...\)

References

  1. Angeli D, Astolfi A (2007) A tight small gain theorem for not necessarily ISS systems. Syst Control Lett 56:87-91

    Article  MathSciNet  MATH  Google Scholar 

  2. Angeli D, Sontag ED, Wang Y (2000) A characterization of integral input-to-state stability. IEEE Trans Autom Control 45:1082-1097

    Article  MathSciNet  MATH  Google Scholar 

  3. Chaillet A, Angeli D, Ito H (2014) Combining iISS and ISS with respect to small inputs: the strong iISS property. IEEE Trans Autom Control 59:2518-2524

    Article  MathSciNet  Google Scholar 

  4. Freeman RA, Kokotović PV (1996) Robust nonlinear control design: State-space and Lyapunov techniques. Birkhäuser, Boston, Massachusetts

    Book  MATH  Google Scholar 

  5. Hill DJ, Moylan PJ (1977) Stability results for nonlinear feedback systems. Automatica 13:377-382

    Article  MATH  Google Scholar 

  6. Isidori A (1999) Nonlinear control systems II. Springer, London

    Book  MATH  Google Scholar 

  7. Ito H (2002) A constructive proof of ISS small-gain theorem using generalized scaling. In: Proceedings of the 41th IEEE Conf. Decision Control, pp 2286-2291

  8. Ito H (2006) State-dependent scaling problems and stability of interconnected iISS and ISS systems. IEEE Trans Autom Control 51:1626-1643

    Article  MathSciNet  Google Scholar 

  9. Ito H (2008) A degree of flexibility in Lyapunov inequalities for establishing input-to-state stability of interconnected systems. Automatica 44:2340-2346

    Article  MathSciNet  MATH  Google Scholar 

  10. Ito H (2010) A Lyapunov approach to cascade interconnection of integral input-to-state stable systems. IEEE Trans Autom Control 55:702-708

    Article  MathSciNet  Google Scholar 

  11. Ito H (2012) Necessary conditions for global asymptotic stability of networks of iISS systems. Math Control Signals Syst 24:55-74

    Article  MathSciNet  MATH  Google Scholar 

  12. Ito H (2013) Utility of iISS in composing Lyapunov functions. In: Proceedings of the 9th IFAC Sympo. Nonlinear Control Systems,Toulouse, France, pp 723-730

  13. Ito H, Dashkovskiy S, Wirth F (2012) Capability and limitation of max- and sum-type construct ion of Lyapunov functions for networks of iISS systems. Automatica 48:1197-1204

    Article  MathSciNet  MATH  Google Scholar 

  14. Ito H, Jiang ZP (2009) Necessary and sufficient small gain conditions for integral input-to-state stable systems: A Lyapunov perspective. IEEE Trans Autom Control 54:2389-2404

    Article  MathSciNet  Google Scholar 

  15. Ito H, Jiang ZP, Dashkovskiy S, Rüffer B (2013) Robust stability of networks of iISS systems: construction of sum-type Lyapunov functions. IEEE Trans Autom Control 58:1192-1207

    Article  MathSciNet  Google Scholar 

  16. Ito H, Kellett CM (2015) Preservation and interconnection of iISSand ISS dissipation inequalities by scaling. In: Proceedings of the1st IFAC Conference on Modelling, Identification and Control of Nonlinear Systems, Saint Petersburg, Russia, pp 776-781

  17. Ito H, Nishimura Y (2014) Stochastic robustness of interconnected nonlinear systems in an iISS Framework. In: Proceedings of the 2014 American Control Conf., Portland, USA, pp 5210-5216

  18. Ito H, Nishimura Y (2014) Stability criteria for cascaded nonlinear stochastic systems admitting not necessarily unbounded decay rate. In: Proceedings of the 19th IFAC World Congress, pp 8616-8622

  19. Ito H, Rüffer BS, Rantzer A (2014) Max- and sum-separable Lyapunov functions for monotone systems and their level sets. In: Proceedings of the 53rd IEEE Conf. Decision Control, Los Angeles,USA, pp 2371-2377

  20. Jiang ZP, Mareels I, Wang Y (1996) A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems. Automatica 32:1211-1215

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang ZP, Teel AR, Praly L (1994) Small-gain theorem for ISS systems and applications. Math Control Signals Syst 7:95-120

    Article  MathSciNet  MATH  Google Scholar 

  22. Karafyllis I, Jiang ZP (2011) Stability and stabilization of nonlinear systems. Springer, London

    Book  MATH  Google Scholar 

  23. Kellett CM, Wirth FR (2016) Nonlinear scalings of (i)ISS-Lyapunov functions. IEEE Trans Autom Control 61:1087-1092

    Article  MathSciNet  Google Scholar 

  24. Kellett CM (2014) A compendium of comparison function results. Math Control Signals Syst 26(3):339-374

    Article  MathSciNet  MATH  Google Scholar 

  25. Krstić M, Kanellakopoulos I, Kokotović PV (1995) Nonlinear and adaptive control design. Wiley, New York

    MATH  Google Scholar 

  26. Krstić M, Li Z (1998) Inverse optimal design of input-to-state stabilizing nonlinear controllers. IEEE Trans Autom Control 43:336-350

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu T, Jiang JP (2014) Nonlinear control of dynamic networks. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  28. Mazenc F, Praly L (1996) Adding integrations, saturated controls and stabilization for feedforward systems. IEEE Trans Autom Control 41:1559-1578

    Article  MathSciNet  MATH  Google Scholar 

  29. Mironchenko A, Ito H (2014) Integral input-to-state stability ofbilinear infinite-dimensional systems. In: Proceedings of the 53rdIEEE Conf. Decision Control, Los Angeles, USA, pp 3155-3160

  30. Praly L, Carnevale D, Astolfi A (2010) Dynamic vs static scaling: anexistence result. In: Proceedings of the 8th IFAC Symp. NonlinearControl Systems, Bologna, Italy, pp 1075-1080

  31. Praly L, Jiang ZP (1993) Stabilization by output feedback for systems with ISS inverse dynamics. Syst Control Lett 21:19-34

    Article  MathSciNet  MATH  Google Scholar 

  32. Rüffer BS, Kellett CM, Weller SR (2010) Connection between cooperative positive systems and integral input-to-state stability of large-scale systems. Automatica 46:1019-1027

    Article  MathSciNet  MATH  Google Scholar 

  33. Sepulchre R, Janković M, Kokotović PV (1997) Constructive nonlinear control. Springer, New York

    Book  MATH  Google Scholar 

  34. Sontag ED (1989) Smooth stabilization implies coprime factorization. IEEE Trans Autom Control 34:435-443

    Article  MathSciNet  MATH  Google Scholar 

  35. Sontag ED (1998) Comments on integral variants of ISS. Syst Control Lett 34:93-100

    Article  MathSciNet  MATH  Google Scholar 

  36. Sontag ED, Teel AR (1995) Changing supply functions in input/state stable systems. IEEE Trans Autom Control 40:1476-1478

    Article  MathSciNet  MATH  Google Scholar 

  37. Sontag ED, Wang Y (1995) On characterizations of input-to-state stability property. Syst Control Lett 24:351-359

    Article  MathSciNet  MATH  Google Scholar 

  38. Teel A (1996) A nonlinear small gain theorem for the analysis of control systems with saturation. IEEE Trans Autom Control 41:1256-1270

    Article  MathSciNet  MATH  Google Scholar 

  39. Willems JC (1972) Dissipative dynamical systems. Arch Ration Mech Anal 45:321-393

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ito.

Additional information

The work is supported in part by JSPS KAKENHI Grant Number 26420422. C. M. Kellett is supported by the Australian Research Council under Future Fellowship FT110100746.

Appendix

Appendix

1.1 Appendix 1: Proof of Theorem 1

Property (17) implies the existence of \(w_L\in (0,\infty )\) and a sequence \(\{s_i\}\) of real numbers such that \(\lim _{i\rightarrow \infty }s_i=\infty \) and \(\lim _{i\rightarrow \infty }\alpha (s_i)<\sigma (w_L)\). By virtue of (8), if \(\liminf _{s\rightarrow \infty }\mu ^\prime (s)=\infty \) holds, then

$$\begin{aligned} \limsup _{|x|\rightarrow \infty } \mu ^\prime (V(x))\{-\alpha (V(x))+\sigma (w_L)\}=\infty . \end{aligned}$$
(99)

On the other hand, the assumptions \(\hat{\alpha }\in \mathcal {P}\) and \(\hat{\sigma }\in \mathcal {K}\) imply

$$\begin{aligned} \limsup _{|x|\rightarrow \infty } -\hat{\alpha }(W(x))+\hat{\sigma }(|w|)<\infty , \quad \forall |w|\in \mathbb {R}_+ . \end{aligned}$$
(100)

The contradiction between (99) and (100) arising from (18) indicates that (19) must hold. If \(\lim _{s\rightarrow \infty }\alpha (s)\) exists, property \(\lim _{i\rightarrow \infty }\alpha (s_i)<\sigma (w_L)\) holds for any sequence \(\{s_i\}\) of real numbers such that \(\lim _{i\rightarrow \infty }s_i=\infty \). Hence, the claim (20) follows from (100).

1.2 Appendix 2: Proof of Theorem 2

The decomposition (11) yields

$$\begin{aligned}&\mu ^\prime (V(x))\left[ -\alpha (V(x))+\sigma (|w|)\right] \nonumber \\&\quad =-b\alpha (V(x))+b\sigma (|w|)+ \lambda (V(x))\left[ -\alpha (V(x))+\sigma (|w|)\right] . \end{aligned}$$
(101)

Obviously, in the case of \(\lambda (s)\equiv 0\), inequality (15) holds with \(\hat{\alpha }=b\alpha \circ \mu ^{-1}\in \mathcal {P}\) and \(\hat{\sigma }=b\sigma \in \mathcal {K}\) which are identical with the pair (23a), (23b). The assertions about \(\hat{\alpha }\in \mathcal {K}\) and \(\hat{\alpha }\in \mathcal {K}_\infty \) are straightforward. Note that \(\omega \) is irrelevant in this case. Hence, the rest of the proof assumes \(\lambda (s)\not \equiv 0\). Property (12) implies \(\lambda (s)>0\) for all \(s\in (0,\infty )\). Since \(\mu ^\prime \) is non-decreasing, so is \(\lambda \).

First, suppose that \(\liminf _{l\rightarrow \infty }\alpha (l)>0\). This clearly guarantees the existence of \(\tilde{\alpha }\in \mathcal {K}\) satisfying (25). It is also straightforward that there exists a continuous function \(\omega : \mathbb {R}_+\rightarrow \mathbb {R}_+\) satisfying (26). Following the idea in [36], we evaluate \(\lambda (V(x))\left[ -\alpha (V(x))+\sigma (|w|)\right] \) in (101) in the two cases \(\tilde{\alpha }(V(x))\ge (\mathbf {Id}+\omega )\circ \sigma (|w|)\) and \(\tilde{\alpha }(V(x))\le (\mathbf {Id}+\omega )\circ \sigma (|w|)\) separately. Due to the non-decreasing property of \(\lambda \) and \(\mathbf {Id}+\omega \in \mathcal {K}_\infty \), the combination of the evaluation in the two cases yields (15) with (23). Notice that (22) implying \(\lim _{s\rightarrow \infty }\lambda (s)< \infty \) for \(\lim _{s\rightarrow \infty }\tilde{\alpha }(s)< \infty \) ensures \(\lambda \circ \tilde{\alpha }^{\ominus }\circ (\mathbf {Id}+\omega )\circ \sigma (s)\) is well-defined for all \(s\in \mathbb {R}_+\). The non-decreasing property of \(\lambda \) and \(\mathbf {Id}+\omega \in \mathcal {K}_\infty \) yields \(\hat{\sigma }\in \mathcal {K}\). It is verified that

$$\begin{aligned} (\mathbf {Id}-(\mathbf {Id}+\omega )^{-1}) \circ (\mathbf {Id}+\omega )=(\mathbf {Id}+\omega )-\mathbf {Id}=\omega . \end{aligned}$$

Due to \(\mathbf {Id}+\omega \in \mathcal {K}_\infty \), we have

$$\begin{aligned} (\mathbf {Id}-(\mathbf {Id}+\omega )^{-1}) =\omega \circ (\mathbf {Id}+\omega )^{-1} \end{aligned}$$
(102)

which gives

$$\begin{aligned} \hat{\alpha }= [\omega \circ (\mathbf {Id}+\omega )^{-1}\circ \tilde{\alpha }\circ \mu ^{-1}] [\lambda \circ \mu ^{-1}] +b\alpha \circ \mu ^{-1} . \end{aligned}$$
(103)

From (26) it follows that \(\omega \circ (\mathbf {Id}+\omega )^{-1}\circ \tilde{\alpha }(s)>0\) holds for all \(s\in (0,\infty )\), and \(\omega \circ (\mathbf {Id}+\omega )^{-1}\circ \tilde{\alpha }\in \mathcal {P}\). Thus, we have \(\hat{\alpha }\in \mathcal {P}\). Finally, Eq. (103) also implies \(\hat{\alpha }\in \mathcal {K}\) (resp. \(\hat{\alpha }\in \mathcal {K}_\infty \)) if \(\omega , \tilde{\alpha }, \alpha \in \mathcal {K}\) (resp. \(\omega , \tilde{\alpha }, \alpha \in \mathcal {K}_\infty \)).

Next, suppose that \(\liminf _{l\rightarrow \infty }\alpha (l)=0\). Then property (24) implies that \(\tilde{\alpha }^\ominus (s)=\infty \) for all \(s\in \overline{\mathbb {R}}_+\) by virtue of the definition of \(\ominus \). Since \(L:=\lim _{l\rightarrow \infty }\lambda (l)< \infty \) is ensured by (22), the formula (23b) gives \(\hat{\sigma }=(b+L)\sigma \in \mathcal {K}\) which is independent of \(\omega \). The choice (24) also implies \(\hat{\alpha }\in \mathcal {P}\) for (23a) for each given \(\omega \). On the other hand,

$$\begin{aligned} b\sigma (|w|)+\lambda (V(x))\sigma (|w|)\le (b+L)\sigma (|w|) ,\quad \forall x\in \mathbb {R}^N, \ \forall w\in \mathbb {R}^M \end{aligned}$$
(104)

holds. From (24) we also obtain

$$\begin{aligned}&b\alpha (V(x))+\lambda (V(x))\alpha (V(x)) \nonumber \\&\quad \ge b\alpha \circ \mu ^{-1}(W(x)) + [\lambda \circ \mu ^{-1}(W(x))][\tilde{\alpha }\circ \mu ^{-1}(W(x))] \end{aligned}$$
(105)
$$\begin{aligned}&\quad \ge b\alpha \circ \mu ^{-1}(W(x)) \nonumber \\&\qquad +[\lambda \circ \mu ^{-1}(W(x))] [(\mathbf {Id}- (\mathbf {Id}+\omega )^{-1})\circ \tilde{\alpha }\circ \mu ^{-1}(W(x))] \end{aligned}$$
(106)

for all \(x\in \mathbb {R}^N\) and \(w\in \mathbb {R}^M\) Applying these inequalities to (101), we arrive at not only (23), but also (23) with (27) with \({\varOmega }\rightarrow \infty \).

Finally, suppose that \(\lim _{s\rightarrow \infty }\mu ^\prime (s)< \infty \). Defining \(L:=\lim _{l\rightarrow \infty }\mu ^\prime (l)< \infty \) again yields (104). Independently, (105) follows from (25). Thus, (101) is bounded from above by \(-\hat{\alpha }(W(x))+\hat{\sigma }(|w|)\) defined by

$$\begin{aligned} \hat{\alpha }(s)= [\tilde{\alpha }\circ \mu ^{-1}(s)] [\lambda \circ \mu ^{-1}(s)] +b\alpha \circ \mu ^{-1}(s) , \quad \hat{\sigma }=(b+L)\sigma (s) . \end{aligned}$$

These functions are identical with taking \({\varOmega }\rightarrow \infty \) in (23) with (27) for each \(s\in \mathbb {R}_+\).

1.3 Appendix 3: Proof of Theorem 3

In the case of \(\lambda (s)\equiv 0\), the claim holds true obviously from \(\alpha , \sigma \in \mathcal {K}\) and (10) since (34) gives \(\hat{\alpha }=b\alpha \circ \mu ^{-1}\in \mathcal {K}\) and \(\hat{\sigma }=b\sigma \in \mathcal {K}\). Therefore, the rest considers the case of \(\lambda (s)\not \equiv 0\). First, suppose that (30)–(32) are satisfied with a continuous function \(\omega : \mathbb {R}_+\rightarrow \mathbb {R}_+\). Following the proof of Theorem 2 with \(\tilde{\alpha }=\alpha \), we obtain \(\hat{\sigma }\in \mathcal {K}\) in (34b). Note that property (28) is guaranteed by (32). The function \(\hat{\alpha }\in \mathcal {K}\) which is obtained as in (23a) with \(\tilde{\alpha }=\alpha \) and satisfies (15) is only of class \(\mathcal {P}\). Hence, write (23a) as \(\eta + b\alpha \circ \mu ^{-1}\) by defining \(\eta \) as in (35). Rewrite \(\eta \in \mathcal {P}\) as

$$\begin{aligned} \eta (s)&= \left[ \left( \frac{\alpha \circ \mu ^{-1} (s)}{(\mathbf {Id}+\omega )^{-1}\circ \alpha \circ \mu ^{-1}(s)} -1\right) \right] \nonumber \\&\quad \cdot \left[ (\mathbf {Id}+\omega )^{-1}\circ \alpha \circ \mu ^{-1}(s)\right] . \left[ \lambda \circ \mu ^{-1}(s)\right] . \end{aligned}$$
(107)

Applying (30) and (32) to (107) with the help of \(\mu \in \mathcal {K}_\infty \), one arrives at

$$\begin{aligned} \liminf _{s\rightarrow \infty }\eta (s)\ge \lim _{s\rightarrow \infty }[\lambda \circ \alpha ^{\ominus }\circ (\mathbf {Id}+\omega )\circ \sigma ]\sigma . \end{aligned}$$

Since this inequality implies \(\liminf _{s\rightarrow \infty }\eta (s)>0\) and we have \(\alpha \circ \mu ^{-1}\in \mathcal {K}\) in addition, there always exists a continuous function \(k: \mathbb {R}_+\rightarrow \mathbb {R}_+\) such that (36) and (37) are fulfilled. Defining \(\hat{\alpha }\) as in (34a) with (36) and (37) ensures \(\hat{\alpha }\in \mathcal {K}\) and \(\hat{\alpha }(s)\le \eta (s)+ b\alpha \circ \mu ^{-1}(s)\) for all \(s\in \mathbb {R}_+\). Thus, the preservation of the iISS dissipation inequality (9) under the scaling \(\mu \) is established by \(\hat{\alpha }, \hat{\sigma }\in \mathcal {K}\) given in (34). Furthermore, by virtue of \(\limsup _{l\rightarrow \infty } k(l)=1\) and \(\hat{\alpha }\in \mathcal {K}\), property (33) follows from (10), (30) and (107). This proves the preservation of the ISS dissipation inequality.

Finally, replace the pair of (31) and (32) by (27) with \({\varOmega }\rightarrow \infty \) in the case of \(\lim _{s\rightarrow \infty }\mu ^\prime (s)< \infty \). Define \(L:=\lim _{l\rightarrow \infty }\lambda (l)< \infty \). Then (34) becomes

$$\begin{aligned} \hat{\alpha }=k [\mu ^\prime \circ \mu ^{-1}][\alpha \circ \mu ^{-1}] , \quad \hat{\sigma }=(b+L)\sigma , \end{aligned}$$
(108)

and clearly satisfies \(\hat{\sigma }\), \(\hat{\sigma }\in \mathcal {K}\). Using (36) and (37) to modify (23) of Theorem 2 verifies that the functions in (108) achieve the preservation the iISS dissipation inequality (9) under the scaling \(\mu \). For (108), by virtue of \(\limsup _{l\rightarrow \infty } k(l)=1\) and \(\hat{\alpha }\in \mathcal {K}\), property (33) is implied by (10). This establishes the preservation the ISS dissipation inequality.

1.4 Appendix 4: Proof of Proposition 2

The existence of \(\tau , \varphi \ge 0\) fulfilling (45) is straightforward from \(c>1\). Property (44) with \(\tau <c\) implies (39). Due to the property \(\alpha _{i}\circ \alpha ^{\ominus }(s)\le s\) for all \(s\in \mathbb {R}_+\), property (40) follows if

$$\begin{aligned} \lim _{s\rightarrow \infty }(\tau -1)\left[ \alpha (s)\right] ^\varphi \beta (s) \ge \lim _{s\rightarrow \infty } [\tau \sigma (s)]^\varphi [\beta \circ \alpha ^\ominus \circ \tau \sigma (s)] . \end{aligned}$$
(109)

The non-decreasing property of \(\beta \) and (39) guarantee

$$\begin{aligned} \lim _{s\rightarrow \infty }\beta (s) \ge \lim _{s\rightarrow \infty } [\beta \circ \alpha ^\ominus \circ \tau \sigma (s)] . \end{aligned}$$

Thus, if

$$\begin{aligned} \lim _{s\rightarrow \infty }(\tau -1)\left[ \alpha (s)\right] ^\varphi \ge \lim _{s\rightarrow \infty } [\tau \sigma (s)]^\varphi \end{aligned}$$
(110)

is met, property (109) is satisfied. In the case where (45) holds for \(\varphi =0\), we can easily verify (110). Therefore, we next assume that (45) holds for some \(\varphi >0\). Property (110) is satisfied if we have

$$\begin{aligned} \lim _{s\rightarrow \infty }(\tau -1)^{\frac{1}{\varphi }}\alpha (s) \ge \lim _{s\rightarrow \infty } \tau \sigma (s) . \end{aligned}$$

This property is achieved if

$$\begin{aligned} (\tau -1)^{-\frac{1}{\varphi }}\tau \le c \end{aligned}$$
(111)

since we have (44). Property (111) is secured by (45).

1.5 Appendix 5: Proof of Proposition 4

In the case of \(\mu ^\prime (s)\equiv b\), the implications (52) and (22) do not require anything, which proves the claim. Suppose that \(\mu ^\prime (s)\not \equiv b\). Since \(\mu \in \mathcal {K}_\infty \), property (49) is equivalent to

$$\begin{aligned} (\lambda +b)\alpha -\kappa \circ \lambda \in \mathcal {P}. \end{aligned}$$
(112)

Clearly, this property implies

$$\begin{aligned} (\lambda (s)+b)\alpha (s)-\kappa \circ \lambda (s)\ge 0 , \quad \forall s\in \mathbb {R}_+ . \end{aligned}$$
(113)

Recalling \(\mu ^\prime (s)\not \equiv b\), properties \(\lim _{s\rightarrow \infty }\lambda (s)>0\) and \(\kappa \in \mathcal {K}_\infty \) imply \(\lim _{s\rightarrow \infty }\kappa \circ \lambda (s)>0\). Since \(\kappa ^\prime \) is of \(\mathcal {K}_\infty \), property (113) requires \(\liminf _{s\rightarrow \infty }\alpha (s)>0\). Hence, property (52) must hold. Next, suppose \(\lim _{s\rightarrow \infty }\mu ^\prime (s)=\infty \) which means \(\lim _{s\rightarrow \infty }\lambda (s)=\infty \). Property \(\kappa ^\prime \in \mathcal {K}_\infty \) in (113) again implies \(\lim _{s\rightarrow \infty }\alpha (s)=\infty \). Therefore, (22) must hold.

1.6 Appendix 6: Proof of Theorem 4

First, we assume that (64) holds. Let \(L:=\lim _{l\rightarrow \infty }\lambda (l)\le \infty \). Suppose that \(\alpha \circ \lambda ^\ominus \) is piecewise differentiable on the interval [0, L). Let \(\kappa ^\prime \) be any class \(\mathcal {K}_\infty \) function satisfying

$$\begin{aligned} \frac{1}{\tau }\alpha \circ \lambda ^{\ominus }(s) \le \kappa ^\prime (s) \le \frac{1}{\tau }\alpha \circ \lambda ^{\ominus }(s)+ \frac{1}{\tau } s\,[(\alpha \circ \lambda ^{\ominus })^\prime (s)], \quad \forall s\in [0,L) , \end{aligned}$$
(114)

where the second inequality is evaluated at all differentiable points. Note that \((\alpha \circ \lambda ^\ominus )^\prime (s)\ge 0\) holds for almost all \(s\in [0,L)\) due to \(\alpha \), \(\lambda \in \mathcal {K}\). Therefore, in the case of \(\lim _{s\rightarrow \infty }\alpha (s)< \infty \), the existence of a function \(\kappa ^\prime \in \mathcal {K}_\infty \) satisfying (114) follows from assumption (22) since \(\lim _{s\rightarrow \infty }\lambda (s)< \infty \) and \(\alpha , \lambda \in \mathcal {K}\). In the case of \(\lim _{s\rightarrow \infty }\alpha (s)= \infty \), the existence is guaranteed by \(\alpha \circ \lambda ^{\ominus }\in \mathcal {K}_\infty \) under the assumption of (64).

Let \(\kappa \) denote the antiderivative of \(\kappa ^\prime \) satisfying \(\kappa (0)=0\). Then \(\kappa \in \mathcal {K}_\infty \) follows from \(\kappa ^\prime \in \mathcal {K}_\infty \). Define the map \(\overline{\mathbb {R}}_+\rightarrow \overline{\mathbb {R}}_+\) as

$$\begin{aligned} \overline{\kappa }(s)=\displaystyle \frac{1}{\tau }s\,[\alpha \circ \lambda ^\ominus (s)] , \quad s\in \overline{\mathbb {R}}_+ , \end{aligned}$$
(115)

which satisfies

$$\begin{aligned}&\overline{\kappa }^\prime (s)= \frac{1}{\tau }\alpha \circ \lambda ^{\ominus }(s)+ \frac{1}{\tau } s\,[(\alpha \circ \lambda ^{\ominus })^\prime (s)] \end{aligned}$$
(116)

for almost all \(s\in [0,L)\). Thus, from (114) we obtain

$$\begin{aligned} \kappa (s)\le \overline{\kappa }(s) , \quad \forall s\in [0,L) . \end{aligned}$$
(117)

This property together with (115) yields

$$\begin{aligned}&\kappa \circ \lambda (s)\le \overline{\kappa }\circ \lambda (s) =\frac{1}{\tau }\lambda (s)\alpha (s) , \quad \forall s\in \mathbb {R}_+. \end{aligned}$$
(118)

Hence, we have

$$\begin{aligned} \hat{\alpha }_L(s)= [\mu ^\prime \circ \mu ^{-1}(s)][\alpha \circ \mu ^{-1}(s)] -\kappa \circ \lambda \circ \mu ^{-1}(s) \ge \hat{\alpha }_{D,\tau }(s) , \ \forall s\in \mathbb {R}_+ \end{aligned}$$
(119)

and \(\hat{\alpha }_{D,\tau }\in \mathcal {K}\) by virtue of \(\mu \in \mathcal {K}_\infty \) and \(\tau >1\). Therefore, we arrive at (61) with \(\hat{\alpha }_L\in \mathcal {K}\).

Next, applying \(\lambda \in \mathcal {K}\) to both sides of the first inequality in (114) from the right, one obtains

$$\begin{aligned} \frac{1}{\tau }\alpha (s)\le \kappa ^\prime \circ \lambda (s) , \quad \forall s\in \mathbb {R}_+ . \end{aligned}$$

Applying the non-decreasing function \(\alpha ^\ominus (\tau s)\) defined for \(s\in [0,\lim _{l\rightarrow \infty }\alpha (l)/\tau )\) again yields

$$\begin{aligned} s\le \kappa ^\prime \circ \lambda \circ \alpha ^\ominus (\tau s) , \quad \forall s\in [0,\lim _{l\rightarrow \infty }\alpha (l)/\tau ) . \end{aligned}$$

Applying \((\kappa ^\prime )^{-1}\in \mathcal {K}_\infty \) to the above from the left, one obtains

$$\begin{aligned} (\kappa ^\prime )^{-1}(s) \le \lambda \circ \alpha ^{\ominus }(\tau s) , \quad \forall s\in [0,\lim _{l\rightarrow \infty }\alpha (l)/\tau ) . \end{aligned}$$
(120)

Here, recalling \(\ell \kappa (s)=s(\kappa ^\prime )^{-1}(s)-\kappa \circ (\kappa ^\prime )^{-1}(s)\) and \(\kappa , \kappa ^\prime \in \mathcal {K}_\infty \), we have \(\ell \kappa (s)\le s(\kappa ^\prime )^{-1}(s)\) for all \(s\in \mathbb {R}_+\). Thus,

$$\begin{aligned} \ell \kappa (s)\le s\,[\lambda \circ \alpha ^\ominus (\tau s)] , \quad \forall s\in [0,\lim _{l\rightarrow \infty }\alpha (l)/\tau ) . \end{aligned}$$

Hence, we have

$$\begin{aligned}&\ell \kappa \circ \sigma (s) \le [\lambda \circ \alpha ^\ominus \circ \tau \sigma (s)]\sigma (s) , \quad \forall s\in [0,\lim _{l\rightarrow \infty }\sigma ^\ominus \circ \tau ^{-1}\alpha (l)) . \end{aligned}$$

Since we have the implication

$$\begin{aligned} \lim _{l\rightarrow \infty }\alpha (l)<\lim _{l\rightarrow \infty }\tau \sigma (l) \ \Rightarrow \ \lambda \circ \alpha ^\ominus \circ \tau \sigma (s) =L , \quad \forall s\in [\lim _{l\rightarrow \infty }\sigma ^\ominus \circ \tau ^{-1}\alpha (l),\infty ) , \end{aligned}$$

by virtue of (22), we arrive at

$$\begin{aligned} \min \{ \ell \kappa \circ \sigma (s), L\sigma (s) \} \le [\lambda \circ \alpha ^\ominus \circ \tau \sigma (s)]\sigma (s) , \ \forall s\in \mathbb {R}_+ . \end{aligned}$$

Comparing this with (42) yields

$$\begin{aligned} \hat{\sigma }_L(s)= \min \left\{ \ell \kappa \circ \sigma (s), L\sigma (s)\right\} +b\sigma \le \hat{\sigma }_{D,\tau }(s) , \quad \forall s\in \mathbb {R}_+ \end{aligned}$$
(121)

which implies (62) with \(R=\infty \) and (63).

If \(\alpha \circ \lambda ^\ominus : [0,L)\rightarrow \mathbb {R}_+\) is not piecewise differentiable, the above arguments hold true by replacing (114) with

$$\begin{aligned} \kappa ^\prime (s)= \frac{1}{\tau }\alpha \circ \lambda ^{\ominus }(s), \quad \forall s\in [0,L) . \end{aligned}$$
(122)

Note that (117) is guaranteed again since \(\kappa ^\prime \in \mathcal {K}_\infty \) is chosen, due to (22).

Finally, suppose that (64) does not hold, i.e., assume that \(\lim _{s\rightarrow \infty }\lambda (s)< \infty \) and \(\lim _{s\rightarrow \infty }\alpha (s)=\infty \) are satisfied. Let \(q>0\) be arbitrary. Consider \(p\in (0,\infty )\) which has yet to be determined. Let \(\tilde{\lambda }\in \mathcal {K}_\infty \) be defined as

$$\begin{aligned} \tilde{\lambda }(s)=\lambda (s)+q\max \{s-p,0\} , \quad \forall s\in \mathbb {R}_+ . \end{aligned}$$
(123)

Obviously, \(\tilde{L}:=\lim _{l\rightarrow \infty }\tilde{\lambda }(l)=\infty \), \(\tilde{L}>L:=\lim _{l\rightarrow \infty }\lambda (l)\) and in addition,

$$\begin{aligned}&\lambda (s)\le \tilde{\lambda }(s) , \quad \forall s\in \mathbb {R}_+ \end{aligned}$$
(124)
$$\begin{aligned}&\lambda (s)=\tilde{\lambda }(s) , \quad \forall s\in [0,p] . \end{aligned}$$
(125)

Assume that \(\alpha \circ \tilde{\lambda }^{-1}: \mathbb {R}_+\rightarrow \mathbb {R}_+\) is piecewise differentiable. Let \(\kappa ^\prime \) be any class \(\mathcal {K}_\infty \) function satisfying

$$\begin{aligned} \frac{1}{\tau }\alpha \circ \tilde{\lambda }^{-1}(s) \le \kappa ^\prime (s) \le \frac{1}{\tau }\alpha \circ \tilde{\lambda }^{-1}(s)+ \frac{1}{\tau } s\,[(\alpha \circ \tilde{\lambda }^{-1})^\prime (s)], \quad \forall s\in \mathbb {R}_+, \end{aligned}$$
(126)

where the second inequality is evaluated at all differentiable points. Due to \(\alpha , \tilde{\lambda }\in \mathcal {K}_\infty \), we have \((\alpha \circ \tilde{\lambda }^{-1})^\prime (s)\ge 0\) for almost all \(s\in \mathbb {R}_+\). Thus, the existence of a function \(\kappa ^\prime \in \mathcal {K}_\infty \) satisfying (126) is guaranteed by virtue of \(\alpha \circ \tilde{\lambda }^{-1}\in \mathcal {K}_\infty \). Let \(\kappa \) denote the antiderivative of \(\kappa ^\prime \) satisfying \(\kappa (0)=0\). Then \(\kappa \in \mathcal {K}_\infty \) follows from \(\kappa ^\prime \in \mathcal {K}_\infty \). Define \(\overline{\kappa }\in \mathcal {K}_\infty \) by

$$\begin{aligned} \overline{\kappa }(s)=\displaystyle \frac{1}{\tau }s\,[\alpha \circ \tilde{\lambda }^{-1}(s)] , \quad s\in \mathbb {R}_+ . \end{aligned}$$
(127)

Since \(\overline{\kappa }^\prime (s)= \frac{1}{\tau }\alpha \circ \tilde{\lambda }^{-1}(s)+ \frac{1}{\tau } s\,[(\alpha \circ \tilde{\lambda }^{-1})^\prime (s)]\) holds for almost all \(s\in \mathbb {R}_+\), from (126) we obtain

$$\begin{aligned} \kappa (s)\le \overline{\kappa }(s) , \quad \forall s\in \mathbb {R}_+ . \end{aligned}$$
(128)

This property, (127) and (124) give

$$\begin{aligned} \kappa \circ \lambda (s)\le \overline{\kappa }\circ \lambda (s)= \frac{1}{\tau }\lambda (s)\,[\alpha \circ \tilde{\lambda }^{-1}\circ \lambda (s)] \le \frac{1}{\tau }\lambda (s)\alpha (s) , \quad \forall s\in \mathbb {R}_+. \end{aligned}$$

Hence, by virtue of \(\mu \in \mathcal {K}_\infty \) and \(\tau >1\), we arrive at (61) with \(\hat{\alpha }_L\in \mathcal {K}\). On the other hand, taking inverse of both sides of the first inequality in (126) yields

$$\begin{aligned} \tilde{\lambda }\circ \alpha ^{-1}(\tau s) \ge (\kappa ^\prime )^{-1}(s) , \quad \forall s\in \mathbb {R}_+ . \end{aligned}$$
(129)

From \(\ell \kappa (s)\le s(\kappa ^\prime )^{-1}(s)\) for all \(s\in \mathbb {R}_+\) it follows that

$$\begin{aligned}&\ell \kappa \circ \sigma (s) \le [\tilde{\lambda }\circ \alpha ^{-1}\circ \tau \sigma (s)]\sigma (s) , \quad \forall s\in \mathbb {R}_+ . \end{aligned}$$

Due to (125), we have

$$\begin{aligned}&\ell \kappa \circ \sigma (s) \le [\lambda \circ \alpha ^{-1}\circ \tau \sigma (s)]\sigma (s) , \quad \forall s\in [0,\sigma ^\ominus \circ \tau ^{-1}\alpha (p)) . \end{aligned}$$

Since \(\alpha \) is of class \(\mathcal {K}_\infty \), for any given \(R\in (0,\infty )\), there exists \(p\in (0,\infty )\) such that \(R=\sigma ^\ominus \circ \tau ^{-1}\alpha (p)\) holds. Therefore,

$$\begin{aligned} \min \{ \ell \kappa \circ \sigma (s), L\sigma (s) \} \le [\lambda \circ \alpha ^\ominus \circ \tau \sigma (s)]\sigma (s) , \ \forall s\in [0,R) . \end{aligned}$$

Using \(L=\lim _{l\rightarrow \infty }\lambda (l)\) and (42), we obtain (62) and (63). If \(\alpha \circ \tilde{\lambda }^\ominus : \mathbb {R}_+\rightarrow \mathbb {R}_+\) is not piecewise differentiable, the above arguments hold true by replacing (126) with

$$\begin{aligned} \kappa ^\prime (s)= \frac{1}{\tau }\alpha \circ \tilde{\lambda }^{-1}(s), \quad \forall s\in \mathbb {R}_+ . \end{aligned}$$
(130)

This completes the proof.

1.7 Appendix 7: Proof of Proposition 6

Apply Theorem 2 and Remark 3 to each subsystem \({\varSigma }_i\) with \(\omega _i(s)=(\tau -1)s\) for \(\tau >1\), \(\tilde{\alpha }_i=\alpha _i\) and \(\lambda _i=\mu _i^\prime \). It can be verified that (52), (25) and (26) are satisfied. Property (77) also guarantees (28). The formulas in (29) with \(\tilde{\alpha }_i=\alpha _i\in \mathcal {K}\) yield

$$\begin{aligned}&\hat{\alpha }_i= \left( 1-\frac{1}{\tau }\right) \left[ \alpha _{i}\circ \mu _i^{-1}(s) \right] ^{\varphi +1} \left[ \sigma _{3-i}\circ \mu _i^{-1}(s)\right] ^{\varphi +1} , \end{aligned}$$
(131)
$$\begin{aligned}&\hat{\sigma }_i= \left[ \alpha _{i}\circ \alpha _i^{\ominus }\circ \tau \sigma _i(s) \right] ^\varphi \left[ \sigma _{3-i}\circ \alpha _i^{\ominus }\circ \tau \sigma _i(s)\right] ^{\varphi +1}\sigma _i(s) \end{aligned}$$
(132)

Property \(\alpha _{i}\circ \alpha ^{\ominus }(s)\le s\) for all \(s\in \mathbb {R}_+\) and property (77) with \(1<\tau \le c\) in (79) imply

$$\begin{aligned} \hat{\sigma }_i(s)&\le \tau ^\varphi \left[ \sigma _{3-i}\circ \alpha _i^{\ominus }\circ \tau \sigma _i(s)\right] ^{\varphi +1}[\sigma _i(s)]^{\varphi +1} \nonumber \\&\le \tau ^\varphi \left[ \displaystyle \frac{1}{c} \alpha _{3-i}(s)\right] ^{\varphi +1}[\sigma _i(s)]^{\varphi +1} , \quad s\in \mathbb {R}_+ . \end{aligned}$$
(133)

Thus, we have

$$\begin{aligned} \sum _{i=1}^2\mu _i^\prime (V_i)\{-\alpha _i(V_i)+\sigma _i(V_{3-i})\} \le -\sum _{i=1}^2[\sigma _{3-i}\circ \mu _i^{-1}(W_i)]^{\varphi +1}q_i(W_i), \end{aligned}$$
(134)

where \(W_i=\mu _i(V_i)\) and

$$\begin{aligned} q_i(s)= \left( 1-\frac{1}{\tau }\right) [\alpha _i\circ \mu _i^{-1}(s)]^{\psi +1} -\tau ^{\psi } \left[ \frac{1}{c}\alpha _i\circ \mu _i^{-1}(s)\right] ^{\psi +1} . \end{aligned}$$

The existence of \(\epsilon >0\) such that

$$\begin{aligned} q_i(s)\ge \epsilon [\alpha _i\circ \mu _i^{-1}(s)]^{\psi +1} , \quad s\in \mathbb {R}_+ \end{aligned}$$
(135)

is guaranteed by (79). From (134), (135), (73) and (74) it follows that W is a Lyapunov function proving GAS of \(x=0\) of (72).

1.8 Appendix 8: Proof of Proposition 7

Property (80) together with (78) implies

$$\begin{aligned} \left\{ \displaystyle \lim _{s\rightarrow \infty }\alpha _i(s)=\infty \ \quad \mathrm{or}\quad \ \lim _{s\rightarrow \infty }\mu _i^\prime (s)<\infty \right\} , \ i=1,2. \end{aligned}$$
(136)

In the case of \(\lim _{s\rightarrow \infty }\mu _i^\prime (s)<\infty \), \(i=1,2\), iISS and ISS of system (72) are easily verified by incorporating

$$\begin{aligned} \mu _i^\prime (V_i)\theta _i(|w_i|) \le \lim _{l\rightarrow \infty }\mu _i^\prime (l)\theta _i(|w_i|) , \quad i=1,2 \end{aligned}$$
(137)

into the proof of Proposition 6. In the remaining case, property (136) allows one to invoke a technique proposed in [8, 14] as indicated by [12, Proposition 12].

1.9 Appendix 9: Proof of Theorem 5

Suppose that \(\tau , \varphi \ge 0\) satisfy (45). Then \(\tau <c\) implies \(({\tau }/{c})^\varphi >({\tau }/{c})^{\varphi +1}\). Hence, property (79) is met. By virtue of (77), Propositions 6 and 7 prove all the claims.

1.10 Appendix 10: Proof of Theorem 6

First, the function \(\lambda _{i,\psi }\) defined by (87) for each \(i=1,2\) is of class \(\mathcal {K}\) for all \(\psi >0\) since \(\alpha _i, \sigma _{3-i}\in \mathcal {K}\). With the help of (80), property (87) with \(\psi >0\) also ensures

$$\begin{aligned} \left\{ \lim _{s\rightarrow \infty }\alpha _i(s)< \infty \ \Leftrightarrow \ \lim _{s\rightarrow \infty }\lambda _{i,\psi }(s)< \infty \right\} , \ i=1,2 \end{aligned}$$
(138)

for all \(\psi >0\), which corresponds to (64) as well as (22). Thus, for arbitrary given \(\psi >0\), Corollary 4 is applicable to the two pairs \((\alpha _i,\sigma _i)\), \(i=1,2\), and the formula (66) with (65) and \(k=0\), which is exactly (88), guarantees (61) and (62) with \(R=\infty \), provided that \(\kappa _{i,\psi }: [0,L_{i,\psi })\rightarrow \mathbb {R}_+\) is continuously differentiable, and that (67), (68) and (69) hold in terms of \(\kappa _{i,\psi }\) for each \(i\in \{1,2\}\). Recall that the arguments to derive (119) and (121) allow \(\kappa _{i,\psi }\) to be defined on only the interval \([0,{L_i,\psi })\) in (88) instead of the entire \(\mathbb {R}_+\). To confirm the continuous differentiability of \(\kappa _{i,\psi }\) and (67), (68) and (69), using (87) and (88) and continuous differentiability of \(\alpha _i\) and \(\sigma _{3-i}\), we first obtain

$$\begin{aligned}&\lambda _{i,\psi }^\prime (s) = (\alpha _i(s)\sigma _{3-i}(s))^\psi \left\{ \frac{\psi \alpha _i^\prime (s)\sigma _{3-i}(s)}{\alpha _i(s)}+ (\psi +1)\sigma _{3-i}^\prime (s)\right\} , \ \forall s\in (0,\infty ) \end{aligned}$$
(139)
$$\begin{aligned}&\kappa _{i,\psi }\circ \lambda _{i,\psi }(s) =\frac{1}{\tau }(\alpha _i(s)\sigma _{3-i}(s))^{\psi +1} , \ \forall s\in \mathbb {R}_+ \end{aligned}$$
(140)
$$\begin{aligned}&[\kappa _{i,\psi }\circ \lambda _{i,\psi }]^\prime (s) = \frac{\psi +1}{\tau }(\alpha _i(s)\sigma _{3-i}(s))^\psi \left\{ \alpha _i^\prime (s)\sigma _{3-i}(s)+\alpha _i(s)\sigma _{3-i}^\prime (s) \right\} , \nonumber \\&\qquad \forall s\in \mathbb {R}_+ . \end{aligned}$$
(141)

The chain rule \([\kappa _{i,\psi }\circ \lambda _{i,\psi }]^\prime (s)= \left( \kappa _{i,\psi }^\prime \circ \lambda _{i,\psi }(s)\right) \lambda _{i,\psi }^\prime (s)\) yields

$$\begin{aligned} \kappa _{i,\psi }^\prime \circ \lambda _{i,\psi }(s)&= [\kappa _{i,\psi }\circ \lambda _{i,\psi }]^\prime (s) \frac{1}{\lambda _{i,\psi }^\prime (s)} \nonumber \\&= \frac{1}{\tau }\alpha _i(s) \left( 1+G_{i,\psi }(s)\right) , \end{aligned}$$
(142)

where

$$\begin{aligned} G_{i,\psi }(s)&=\frac{\alpha _i^\prime (s)\sigma _{3-i}(s)}{\psi \alpha _i^\prime (s)\sigma _{3-i}(s) +(\psi +1)\alpha _i(s)\sigma _{3-i}^\prime (s)} , \\&=\frac{1}{\psi +(\psi +1)\dfrac{\alpha _i(s) \sigma _{3-i}^\prime (s)}{\alpha _i^\prime (s)\sigma _{3-i}(s)}} . \end{aligned}$$

Property \(\alpha _i, \sigma _{3-i}\in \mathcal {K}\) implies \(\alpha _i(s)\ge 0\) and \(\sigma _{3-i}(s)\ge 0\) for \(s\in \mathbb {R}_+\). Hence, for each \(\psi >0\), assumption (86) and \(\alpha _i\in \mathcal {K}\) guarantee that \(\kappa _{i,\psi }^\prime \circ \lambda _{i,\psi }(s)\) given by (142) exits and is strictly increasing for all \(s\in \mathbb {R}_+\). By definition, it also holds that

$$\begin{aligned} \lim _{s\rightarrow \infty }G_{i,\psi }(s)<\infty \end{aligned}$$
(143)

for any \(\psi >0\). Therefore, properties \(\kappa _{i,\psi }^\prime \circ \lambda _{i,\psi }(0)=0\) and \(\lambda _{i,\psi }\in \mathcal {K}\) ensure for all \(\psi >0\) that \(\kappa _{i,\psi }^\prime (s)\) exists for \(s\in [0,L_{i,\psi })\), and

$$\begin{aligned}&\kappa _{i,\psi }^\prime (0)=0 \end{aligned}$$
(144)
$$\begin{aligned}&\kappa _{i,\psi }^\prime (s) \text{ is } \text{ strictly } \text{ increasing } \forall s\in [0,L_{i,\psi }) . \end{aligned}$$
(145)

Recalling that \(L_{i,\psi }< \infty \) implies \(\lim _{s\rightarrow \infty }\alpha _i(s)< \infty \) due to (138), from (142) and (143) it follows that

$$\begin{aligned} L_{i,\psi }<\infty \ \Rightarrow \lim _{s\rightarrow \,L_{i,\psi }^-}\kappa _{i,\psi }^\prime (s)<\infty . \end{aligned}$$
(146)

Therefore, it is proved that \(\kappa _{i,\psi }\) is continuously differentiable and fulfills and (67), (68) and (69) for each \(i=1,2\). We can now invoke Corollary 4. By virtue of \(\tilde{\alpha }_{i,\psi }=\lambda _{i,\psi }\alpha -\kappa _{i,\psi }\circ \lambda _{i,\psi }\) that can be verified from (118) with \(\kappa =\overline{\kappa }\), substituting (119) and (121) into (134) and (135) in the proof of Proposition 6, there exists \(\epsilon >0\) satisfying (90). Hence, (i) is proved. Finally, following the arguments used to prove Propositions 6 and 7, the proof of (ii) is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, H., Kellett, C.M. iISS and ISS dissipation inequalities: preservation and interconnection by scaling. Math. Control Signals Syst. 28, 17 (2016). https://doi.org/10.1007/s00498-016-0169-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00498-016-0169-2

Keywords

Navigation