Skip to main content
Log in

Approximate local output regulation for nonlinear distributed parameter systems

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

Output regulation for a class of nonlinear infinite-dimensional systems, called regular nonlinear systems (RNS), is the subject of this work. For the plants in this class, the linearization at the origin is an exponentially stable regular linear system (RLS). The plants are driven by a control input and a disturbance signal. Well-posedness of the plants for small initial states, control inputs and disturbance signals is established and it is shown that if the control input and the disturbance signal for a plant are T-periodic, then so are its state and output (asymptotically). On the basis of this characterization, an approximate local output regulator problem for multi-input multi-output (MIMO) plants in the RNS class is addressed. Given a plant, the regulation objective is to ensure that a finite number of harmonics of a T-periodic reference signal and the plant output are identical whenever the reference signal, the T-periodic disturbance signal for this plant and the initial state are small. An internal model based output feedback control scheme is proposed for an exponentially stable RLS for tracking reference signals, which are a finite sum of functions that are a product of a sinusoid and a polynomial in time. This scheme merely uses the transfer function gains of the RLS at the poles of the Laplace transform of the reference signal and practically requires no other data. Using the proposed control scheme, a linear finite-dimensional controller is designed for a MIMO nonlinear plant in the RNS class using minimal plant information. The resulting closed-loop system is rigorously analyzed to establish that the controller achieves the regulation objective. The efficacy of the control design is illustrated numerically using the model of a cable coupled to a point mass via a nonlinear spring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aulisa E, Burns JA, Gilliam DS (2012) An example of thermal regulation of a two dimensional non-isothermal incompressible flow. In: Proceedings of 51\({\rm st}\) IEEE Conference on Decision and Control, Maui, pp 1578–1583

  2. Boulite S, Bouslous H, Maniar L, Saij R (2014) Sufficient and necessary conditions for the solvability of the state feedback regulator problem. Int J Robust Nonlinear Control 24:2958–2973

    Article  MathSciNet  MATH  Google Scholar 

  3. Byrnes CI, Gilliam DS (2007) Approximate solutions of the regulator equations for nonlinear DPS. In: Proceedings of 46\({\rm th}\) IEEE Conference on Decision and Control, Los Angeles, pp 854–859

  4. Byrnes CI, Gilliam DS (2008) Geometric output regulation for a class of nonlinear distributed parameter systems. In: Proceedings of American Control Conference, Seattle, pp 254–259

  5. Byrnes CI, Laukó IG, Gilliam DS, Shubov VI (2000) Output regulation for linear distributed parameter systems. IEEE Trans Autom Control 45:2236–2252

    Article  MathSciNet  MATH  Google Scholar 

  6. Carr J (1981) Applications of center manifold theory. Springer, New York

    Book  MATH  Google Scholar 

  7. Chen Z, Huang J (2005) Global robust output regulation for output feedback systems. IEEE Trans Autom Control 50:117–121

    Article  MathSciNet  Google Scholar 

  8. Davison EJ (1976) Multivariable tuning regulators: the feedforward and robust control of a general servomechanism. IEEE Trans Autom Control 21:35–47

    Article  MathSciNet  MATH  Google Scholar 

  9. Deutscher J (2011) Output regulation for linear distributed-parameter systems using finite-dimensional dual observers. Automatica 47:2468–2473

    Article  MathSciNet  MATH  Google Scholar 

  10. Fliegner T, Logemann H, Ryan EP (2011) Low-gain integral control of well-posed linear infinite-dimensional systems with input and output nonlinearities. J Math Anal Appl 261:307–336

    Article  MathSciNet  MATH  Google Scholar 

  11. Francis BA, Wonham WM (1975) The internal model principle for linear multivariable regulators. Appl Math Optim 2:170–194

    Article  MathSciNet  MATH  Google Scholar 

  12. Francis BA (1977) The linear multivariable regulator problem. SIAM J Control Optim 15:486–505

    Article  MathSciNet  MATH  Google Scholar 

  13. Freitag E, Busam R (2005) Complex analysis. Springer, Berlin

    MATH  Google Scholar 

  14. Fridman E (2003) Output regulation of nonlinear systems with delay. Syst Control Lett 50:81–93

    Article  MathSciNet  MATH  Google Scholar 

  15. Hämälainen T, Pohjolainen S (2000) A finite-dimensional robust controller for systems in the CD-algebra. IEEE Trans Autom Control 45:421–431

    Article  MathSciNet  MATH  Google Scholar 

  16. Hämälainen T, Pohjolainen S (2010) Robust regulation of distributed parameter systems with infinite-dimensional exosystems. SIAM J Control Optim 48:4846–4873

    Article  MathSciNet  MATH  Google Scholar 

  17. Hara S, Yamamoto Y, Omata T, Nakano M (1988) Repetitive control system: a new type servo system for periodic exogenous signals. IEEE Trans Autom Control 33:659–668

    Article  MathSciNet  MATH  Google Scholar 

  18. Haragus M, Iooss G (2011) Local bifurcations, center manifolds, and normal forms in infinite-dimensional dynamical systems. EDP Sciences and Springer, London

    Book  MATH  Google Scholar 

  19. Hepburn JSA, Wonham WM (1984) Error feedback and internal models on differentiable manifolds. IEEE Trans Autom Control 29:397–403

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang J, Rugh WJ (1992) An approximation method for the nonlinear servomechanism problem. IEEE Trans Autom Control 37:1395–1398

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang J (2004) Nonlinear output regulation: theory and applications. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  22. Immonen E, Pohjolainen (2005) Output regulation of periodic signals for DPS: an infinite-dimensional signal generator. IEEE Trans Autom Control 50:1799–1804

    Article  MathSciNet  Google Scholar 

  23. Immonen E, Pohjolainen S (2006) Feedback and feedforward output regulation of bounded uniformly continuous signals for infinite-dimensional systems. SIAM J Control Optim 45:1714–1735

    Article  MathSciNet  MATH  Google Scholar 

  24. Immonen E (2007) Practical output regulation for bounded linear infinite-dimensional state space systems. Automatica 43:786–794

    Article  MathSciNet  MATH  Google Scholar 

  25. Isidori A, Byrnes CI (1990) Output regulation of nonlinear systems. IEEE Trans Autom Control 35:131–140

    Article  MathSciNet  MATH  Google Scholar 

  26. Isidori A (1995) Nonlinear control systems, 3rd edn. Springer, London

    Book  MATH  Google Scholar 

  27. Logemann H, Owens DH (1989) Low-gain control of unknown infinite-dimensional systems: a frequency-domain approach. Dynam Stabil Syst 4:13–29

    Article  MathSciNet  MATH  Google Scholar 

  28. Logemann H, Ryan EP, Townley S (1998) Integral control of infinite-dimensional linear systems subject to input saturation. SIAM J Control Optim 36:1940–1961

    Article  MathSciNet  MATH  Google Scholar 

  29. Logemann H, Ryan EP (2000) Time-varying and adaptive integral control of infinite-dimensional regular linear systems with input nonlinearities. SIAM J Control Optim 38:1120–1144

    Article  MathSciNet  MATH  Google Scholar 

  30. Logemann H, Ryan EP, Shvartsman I (2007) Integral control of infinite-dimensional systems in the presence of hysteresis: an input-output approach. ESAIM COCV 13:458–483

    Article  MathSciNet  MATH  Google Scholar 

  31. Logemann H, Townley S (1997) Low-gain control of uncertain regular linear systems. SIAM J Control Optim 35:78–116

    Article  MathSciNet  MATH  Google Scholar 

  32. Logemann H, Townley S (2003) Adaptive low-gain integral control of multivariable well-posed linear systems. SIAM J Control Optim 41:1722–1732

    Article  MathSciNet  MATH  Google Scholar 

  33. Marconi L, Praly L (2008) Uniform practical nonlinear output regulation. IEEE Trans Autom Control 53:1184–1202

    Article  MathSciNet  MATH  Google Scholar 

  34. Natarajan V, Bentsman J (2011) Robust rejection of sinusoids in stable nonlinearly perturbed unmodelled linear systems: theory and application to servo. In: Proceedings of American Control Conference, San Francisco, pp 3289–3294

  35. Natarajan V, Bentsman J (2011) Robust periodic reference tracking by stable uncertain infinite-dimensional systems. In: Proceedings of American Control Conference, San Francisco, pp 1777–1782

  36. Natarajan V, Bentsman J (2011) Rejection of sinusoids from nonlinearly perturbed uncertain regular linear systems. In: Proceedings of 50\({\rm th}\) IEEE Conference on Decision and Control and European Control Conference, Orlando, pp 4931–4936

  37. Natarajan V, Gilliam DS, Weiss G (2014) The state feedback regulator problem for regular linear systems. IEEE Trans Autom Control 59:2708–2723

    Article  MathSciNet  Google Scholar 

  38. Omata T, Hara S, Nakano M (1987) Nonlinear repetitive control with application to trajectory control of manipulators. J Robotic Syst 4:631–652

    Article  Google Scholar 

  39. Paunonen L, Pohjolainen S (2010) Internal model theory for distributed parameter systems. SIAM J Control Optim 48:4753–4775

    Article  MathSciNet  MATH  Google Scholar 

  40. Paunonen L, Pohjolainen S (2012) Periodic output regulation for distributed parameter systems. Math Control Signals Syst 24:403–441

    Article  MathSciNet  MATH  Google Scholar 

  41. Pazy A (1983) Semigroups of linear operators and applications to partial differential equations. Applied mathematical sciences. Springer, New York

    Book  MATH  Google Scholar 

  42. Reich S, Shoikhet D (2005) Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces. Imperial College Press, London

    Book  MATH  Google Scholar 

  43. Rebarber R, Weiss G (2003) Internal model based tracking and disturbance rejection for stable well-posed systems. Automatica 39:1555–1569

    Article  MathSciNet  MATH  Google Scholar 

  44. Schumacher JM (1983) Finite-dimensional regulators for a class of infinite-dimensional systems. Syst Control Lett 3:7–12

    Article  MathSciNet  MATH  Google Scholar 

  45. Serrani A, Isidori A, Marconi L (2000) Semiglobal robust output regulation of minimum-phase nonlinear systems. Int J Robust Nonlinear Control 10:379–396

    Article  MathSciNet  MATH  Google Scholar 

  46. Serrani A, Isidori A (2000) Global robust output regulation for a class of nonlinear systems. Syst Control Lett 39:133–139

    Article  MathSciNet  MATH  Google Scholar 

  47. Sureshbabu N, Rugh WJ (1995) Output regulation with derivative information. IEEE Trans Autom Control 40:1755–1766

    Article  MathSciNet  MATH  Google Scholar 

  48. Triggiani R (1991) Regularity of wave and plate equations with interior point control. Rend Mat Acc Lincei Series 9(2):307–315

    MathSciNet  MATH  Google Scholar 

  49. Tucsnak M, Weiss G (2009) Observation and control for operator semigroups. Birkhäuser Verlag, Basel

    Book  MATH  Google Scholar 

  50. Weiss G (1989) Admissibility of unbounded control operators. SIAM J Control Optim 27:527–545

    Article  MathSciNet  MATH  Google Scholar 

  51. Weiss G (1989) The representation of regular linear systems on Hilbert spaces. In: Kappel F, Kunisch K, Schappacher W (eds) Control and estimation of distributed parameter systems, vol 91. Birkhauser Verlag, Basel, pp 401–416

    Google Scholar 

  52. Weiss G (1994) Transfer functions of regular linear systems, part I: characterizations of regularity. Trans Amer Math Soc 342:827–854

    MathSciNet  MATH  Google Scholar 

  53. Weiss G (1994) Regular linear systems with feedback. Math Control Signals Syst 7:23–57

    Article  MathSciNet  MATH  Google Scholar 

  54. Weiss G, Curtain RF (1997) Dynamic stabilization of regular linear systems. IEEE Trans Autom Control 42:4–21

    Article  MathSciNet  MATH  Google Scholar 

  55. Weiss G, Haefele M (1999) Repetitive control of MIMO systems using \(H^\infty \) design. Automatica 35:1185–1199

    Article  MathSciNet  MATH  Google Scholar 

  56. Xi Z, Ding Z (2007) Global adaptive output regulation of a class of nonlinear systems with nonlinear exosystems. Automatica 43:143–149

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The first author thanks George Weiss for several valuable discussions related to this work. The authors wish to thank the anonymous reviewers for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Natarajan.

Additional information

This work was partially supported by Grant 800/14 of the Israel Science Foundation and Grant DMC1300907 of the National Science Foundation.

Preliminary versions of this paper have been presented at the ACC 2011, see [35], and at the IEEE CDC-ECC 2011, see [36].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natarajan, V., Bentsman, J. Approximate local output regulation for nonlinear distributed parameter systems. Math. Control Signals Syst. 28, 24 (2016). https://doi.org/10.1007/s00498-016-0172-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00498-016-0172-7

Keywords

Navigation