Skip to main content

Advertisement

Log in

Controllability of semilinear stochastic delay systems with distributed delays in control

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

This paper considers the problem of controllability for a class of semilinear stochastic delay systems with distributed delays in control. With the aid of fixed point arguments, sufficient conditions for the relative controllability of the above system are established. Examples are given to illustrate the procedure of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimy M, Crauste F (2007) Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay. Discrete Continuous Dyn Syst Ser B 8:19–38

    Article  MathSciNet  MATH  Google Scholar 

  2. Babiarz A, Klamka J, Niezabitowshi M (2016) Schauder’s fixed-point theorem in approximate controllability problems. Int J Appl Math Comput Sci 26:263–275

    Article  MathSciNet  MATH  Google Scholar 

  3. Balachandran K (1986) Controllability of nonlinear systems with delays in both state and control variables. Kybernetika 22:340–348

    MathSciNet  MATH  Google Scholar 

  4. Balachandran K (1987) Global relative controllability of nonlinear systems with time-varying multiple delays in control. Int J Control 46:193–200

    Article  MathSciNet  MATH  Google Scholar 

  5. Balachandran K, Dauer JP (1987) Controllability of nonlinear systems via fixed point theorems. J Optim Theory Appl 53:345352

    Article  MathSciNet  MATH  Google Scholar 

  6. Balachandran K, Dauer JP (1989) Null controllability of nonlinear infinite delay systems with distributed delays in control. J Math Anal Appl 145:274–281

    Article  MathSciNet  MATH  Google Scholar 

  7. Balachandran K, Dauer JP (1996) Null controllability of nonlinear infinite delay systems with time varying multiple delays in control. Appl Math Lett 9:115–121

    Article  MathSciNet  MATH  Google Scholar 

  8. Balachandran K, Divya S, Rodriguez-Germa L, Trujillo JJ (2016) Relative controllability of nonlinear neutral fractional integro-differential systems with distributed delays in control. Math Methods Appl Sci 39:214–224

    Article  MathSciNet  MATH  Google Scholar 

  9. Balachandran K, Karthikeyan S (2009) Controllability of stochastic systems with distributed delays in control. Int J Control 82:1288–1296

    Article  MathSciNet  MATH  Google Scholar 

  10. Balachandran K, Kokila J, Trujillo JJ (2012) Relative controllability of fractional dynamical systems with multiple delays in control. Comput Math Appl 64:3037–3045

    Article  MathSciNet  MATH  Google Scholar 

  11. Berezansky L, Braverman E (2003) Oscillation properties of a logistic equation with distributed delay. Nonlinear Anal Real World Appl 4:1–19

    Article  MathSciNet  MATH  Google Scholar 

  12. Dauer JP, Balachandran K, Anthoni SM (1998) Null controllability of nonlinear infinite neutral systems with delays in control. Comput Math Appl 36:39–50

    Article  MathSciNet  MATH  Google Scholar 

  13. Enrhardt M, Kliemann W (1982) Controllability of stochastic linear systems. Syst Control Lett 2:145–153

    Article  MATH  Google Scholar 

  14. Glizer VY (2016) Controllability conditions of linear singularly perturbed systems with small state and input delays. Math Control Signals Syst 28:1

    Article  MathSciNet  MATH  Google Scholar 

  15. Karthikeyan S, Balachandran K, Sathya M (2015) Controllability of nonlinear stochastic systems with multiple time-varying delays in control. Int J Appl Math Comput Sci 25:207–215

    Article  MathSciNet  MATH  Google Scholar 

  16. Klamka J (1976) Controllability of linear systems with time-variable delays in control. Int J Control 24:869–878

    Article  MathSciNet  MATH  Google Scholar 

  17. Klamka J (1978) Relative controllability of nonlinear systems with distributed delays in control. Int J Control 28:307–312

    Article  MATH  Google Scholar 

  18. Klamka J (1980) Controllability of nonlinear systems with distributed delay in control. Int J Control 31:811–819

    Article  MathSciNet  MATH  Google Scholar 

  19. Klamka J (1982) Observer for linear feedback control of systems with distributed delays in controls and outputs. Syst Control Lett 1:326–331

    Article  MathSciNet  MATH  Google Scholar 

  20. Klamka J (1991) Controllability of dynamical systems. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  21. Klamka J (2000) Schauder’s fixed point theorem in nonlinear controllability problems. Control Cybern 29:153–165

    MathSciNet  MATH  Google Scholar 

  22. Klamka J (2007) Stochastic controllability of linear systems with delay in control. Bull Pol Acad Sci Tech Sci 55:23–29

    MATH  Google Scholar 

  23. Klamka J (2007) Stochastic controllability of linear systems with state delays. Int J Appl Math Comput Sci 1:5–13

    MathSciNet  MATH  Google Scholar 

  24. Klamka J (2008) Stochastic controllability and minimum energy control of systems with multiple delays in control. Appl Math Comput 206:704–715

    MathSciNet  MATH  Google Scholar 

  25. Klamka J (2008) Stochastic controllability of systems with variable delay in control. Bull Pol Acad Sci Tech Sci 56:279–284

    Google Scholar 

  26. Klamka J (2009) Constrained controllability of semilinear systems with delays. Nonlinear Dyn 56:169–177

    Article  MathSciNet  MATH  Google Scholar 

  27. Klamka J (2013) Controllability of dynamical systems. A survey. Bull Pol Acad Sci Tech Sci 61:335–342

    Google Scholar 

  28. Klamka J, Babiarz A, Niezabitowshi M (2016) Banach fixed-point theorem in semilinear controllability problems. Bull Pol Acad Sci Tech Sci 64:21–35

    Google Scholar 

  29. Mahmudov NI (2001) Controllability of linear stochastic systems. IEEE Trans Autom Control 46:724–731

    Article  MathSciNet  MATH  Google Scholar 

  30. Mahmudov NI, Denker A (2000) On controllability of linear stochastic systems. Int J Control 73:144–151

    Article  MathSciNet  MATH  Google Scholar 

  31. Mahmudov NI, Zorlu S (2003) Controllability of nonlinear stochastic systems. Int J Control 76:95–104

    Article  MATH  Google Scholar 

  32. Niu Y, Chen B, Wang X (2009) Sliding mode control for a class of nonlinear it stochastic systems with state and input delays. Int J Control Autom Syst 7:365–370

    Article  Google Scholar 

  33. Oksendal B (2003) Stochastic differential equations, an introduction with applications, 6th edn. Springer, Berlin

    MATH  Google Scholar 

  34. Onwuatu Ju (1989) On controllability of nonlinear-systems with distributed delays in the control. Indian J Pure Appl Math 20:213–228

    MathSciNet  MATH  Google Scholar 

  35. Radhakrishnan B, Balachandran K (2012) Controllability of neutral evolution integrodifferential systems with state dependent delay. J Optim Theory Appl 153:8597

    Article  MathSciNet  MATH  Google Scholar 

  36. Rao VSH, Rao PRS (2004) Global stability in chemostat models involving time delays and wall growth. Nonlinear Anal Real World Appl 5:141–158

    Article  MathSciNet  MATH  Google Scholar 

  37. Richard JP (2003) Time-delay systems: an overview of some recent advances and open problems. Automatica 39:1667–1694

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen L, Sun J (2012) Relative controllability of stochastic nonlinear systems with delay in control. Nonlinear Anal Real World Appl 13:2880–2887

    Article  MathSciNet  MATH  Google Scholar 

  39. Shukla A, Sukavanam N, Pandey DN (2015) Complete controllability of semi-linear stochastic system with delay. Rendiconti del Circolo Matematico di Palermo 64:209–220

    Article  MathSciNet  MATH  Google Scholar 

  40. Shukla A, Sukavanam N, Pandey DN (2016) Complete controllability of semilinear stochastic systems with delay in both state and control. Math Rep 18:247–259

    MathSciNet  MATH  Google Scholar 

  41. Shulan K, Wen C (2016) Optimal control for Ito-stochastic systems with multiple input and output delays. IET Control Theory App 10:1187–1193

    Article  MathSciNet  Google Scholar 

  42. Sikora B, Klamka J (2012) On constrained stochastic controllability of dynamical systems with multiple delays in control. Bull Pol Acad Sci Tech Sci 60:301–305

    Google Scholar 

  43. Sinha ASC (1989) Controllability of large-scale nonlinear systems with distributed delays in control and states. In: Porter WA, Kak SC, Aravena JL (eds) Advances in computing and control. Lecture notes in control and information sciences, vol 130. Springer, Berlin, Heidelberg, pp 150–161

  44. Sipahi R, Atay FM, Niculescu S-I (2007) Stability of traffic flow behavior with distributed delays modeling the memory effects of the drivers. SIAM J Appl Math 68:738–759

    Article  MathSciNet  MATH  Google Scholar 

  45. Scudo FM, Ziegler JR (1978) The golden age of theoretical ecology: 1923–1940. Lecture notes in biomathematics, 22. Springer, Berlin

    MATH  Google Scholar 

  46. Somasundaram D, Balachandran K (1984) Controllability of nonlinear systems consisting of a bilinear mode with distributed delays in control. IEEE Trans Autom Control AC–29:573–575

    Article  MathSciNet  MATH  Google Scholar 

  47. Wolkowichz GSK, Xia H, Ruan S (1997) Competition in the chemostat: a distributed delay model and its global model and its global asymptotic behavior. SIAM J Appl Math 57:1281–1310

    Article  MathSciNet  MATH  Google Scholar 

  48. Zabczyk J (1981) Controllability of stochastic linear systems. Syst Control Lett 1:25–31

    Article  MathSciNet  MATH  Google Scholar 

  49. Zheng F, Cheng M, Gao WB (1994) Feedback stabilization of linear-systems with distributed delays in state and control variables. IEEE Trans Autom Control 39:1714–1718

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of the first author is supported by the UGC-SAP (Grant No. F.510/7/DRS-1/2016 (SAP-I)) and the work of third author is supported by the UGC-BSR Faculty Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Karthikeyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthikeyan, S., Sathya, M. & Balachandran, K. Controllability of semilinear stochastic delay systems with distributed delays in control. Math. Control Signals Syst. 29, 17 (2017). https://doi.org/10.1007/s00498-017-0206-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00498-017-0206-9

Keywords