Skip to main content
Log in

Boundary energy control of a system governed by the nonlinear Klein–Gordon equation

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

The boundary energy control problem for the sine-Gordon and the nonlinear Klein–Gordon equations is posed. Two control laws solving this problem based on the speed-gradient method with smooth and nonsmooth goal functions are proposed. The control law obtained via a nonsmooth goal function is proved to steer the system to any required nonzero energy level in finite time. The results of the numerical evaluation of the proposed algorithm for an undamped nonlinear elastic string demonstrate attainability of the control goal for the cases of both decreasing and increasing systems’ energy and show high rate of vanishing of the control error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aero E, Fradkov AL, Andrievsky B, Vakulenko S (2006) Dynamics and control of oscillations in a complex crystalline lattice. Phys Lett A 353:24–29

    Article  Google Scholar 

  2. Andrievsky BR, Fradkov AL, Orlov YV (2016) Energy control of distributed parameter systems via speed-gradient method: case study of string and sine-Gordon benchmark models. Int J Control 90:2554–2566

    MathSciNet  MATH  Google Scholar 

  3. Aström KJ, Furuta K (2000) Swinging up a pendulum by energy control. Automatica 36:278–285

    MathSciNet  Google Scholar 

  4. Bardos C, Lebeau G, Rauch J (1992) Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J Control Optim 30:1024–1065

    Article  MathSciNet  MATH  Google Scholar 

  5. Blekhman II, Bortsov YA, Fradkov AL, Gavrilov SV, Konoplev VA, Lavrov BP, Shestakov VM, Tomchina OP (2001) Modeling and control of the mechatronic vibrational unit. In: Preprints of 5th IFAC Symposium “Nonlinear Control Systems” (NOLCOS’01), St.Petersburg, pp 894–898

  6. Butkovskii AG (1969) Distributed control systems. Elsevier, New York

    Google Scholar 

  7. Cuevas-Maraver J, Kevrekidis P, Williams F (eds) (2014) The sine-Gordon model and its applications. From pendula and Josephson junctions to gravity and high-energy physics. Springer International Publishing, Switzerland

  8. Dolgopolik MV, Fradkov AL, Andrievsky B (2016) Boundary energy control of the sine-Gordon equation. In: Proceedings of the 6th IFAC workshop on periodic control systems (PSYCO2016), Eindhoven

  9. Dormand JR, Prince PJ (1980) A family of embedded Runge–Kutta formulae. J Comput Appl Math 6:19–26

    Article  MathSciNet  MATH  Google Scholar 

  10. Fradkov AL (1996) Swinging control of nonlinear oscillations. Int J Control 64:1189–1202

    Article  MathSciNet  MATH  Google Scholar 

  11. Fradkov AL (1999) Exploring nonlinearity by feedback. Physica D 128:159–168

    Article  MATH  Google Scholar 

  12. Fradkov AL (2007) Cybernetical physics: from control of chaos to quantum control. Springer, Berlin

    MATH  Google Scholar 

  13. Fradkov AL, Pogromsky AY (1998) Introduction to control of oscillations and chaos. World Scientific Publishers, Singapore

    Book  MATH  Google Scholar 

  14. Fridman E, Terushkin M (2016) New stability and exact observability conditions for semilinear wave equations. Automatica 63:1–10

    Article  MathSciNet  MATH  Google Scholar 

  15. Gravel P, Gauthier C (2011) Classical applications of the Klein–Gordon equation. Am J Phys 79:447–453

    Article  Google Scholar 

  16. Hardy GH, Littlewood JE, Pólya G (1952) Inequalities. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  17. Jiang T, Liu J, He W (2015) Boundary control for a flexible manipulator based on infinite dimensional disturbance observer. J Sound Vib 348:1–14

    Article  Google Scholar 

  18. Joly R, Laurent C (2014) A note on the semiglobal controllability of the semilinear wave equation. SIAM J Control Optim 52:439–450

    Article  MathSciNet  MATH  Google Scholar 

  19. Kani M, Khadem SE, Pashaei MH, Dardel M (2016) Vibration control of a nonlinear beam with a nonlinear energy sink. Nonlinear Dyn 83(1–2):1–22

    Article  MathSciNet  Google Scholar 

  20. Kim D, Kim S, Jung IH (2012) Stabilization for the kirchhoff type equation from an axially moving heterogeneous string modeling with boundary feedback control. Nonlinear Anal 75(8):3598–3617

    Article  MathSciNet  MATH  Google Scholar 

  21. Kobayashi T (2003a) Adaptive stabilization of infinite-dimensional semilinear second-order systems. IMA J Math Control Inf 20:137–152

    Article  MathSciNet  MATH  Google Scholar 

  22. Kobayashi T (2003b) Boundary feedback stabilization of the sine-Gordon equation without velocity feedback. J Sound Vib 266:775–784

    Article  MathSciNet  MATH  Google Scholar 

  23. Kobayashi T (2004) Adaptive stabilization of the sine-Gordon equation by boundary control. Math Methods Appl Sci 27:957–970

    Article  MathSciNet  MATH  Google Scholar 

  24. Luongo A, Zulli D (2015) Nonlinear energy sink to control elastic strings: the internal resonance case. Nonlinear Dyn 81(1–2):425–435

    Article  MathSciNet  MATH  Google Scholar 

  25. Matei A, Micu S (2011) Boundary optimal control for nonlinear antiplane problems. Nonlinear Anal 74(5):1641–1652

    Article  MathSciNet  MATH  Google Scholar 

  26. Mordukhovich BS, Raymond JP (2005) Optimal boundary control of hyperbolic equations with pointwise state constraints. Nonlinear Anal 63(5–7):823–830

    Article  MathSciNet  MATH  Google Scholar 

  27. Natarajan V, Zhou HC, Weiss G, Fridman E (2016) Exact controllability of a class of nonlinear distributed parameter systems using back-and-forth iterations. Int J Control. https://doi.org/10.1080/00207179.2016.1266513

    Google Scholar 

  28. Nguyen QC, Hong KS (2010) Asymptotic stabilization of a nonlinear axially moving string by adaptive boundary control. J Sound Vib 329(22):4588–4603

    Article  Google Scholar 

  29. Nguyen TL, Do KD, Pan J (2013) Boundary control of two-dimensional marine risers with bending couplings. J Sound Vib 332(16):3605–3622

    Article  Google Scholar 

  30. Orlov YV (2009) Discontinuous systems: Lyapunov analysis and robust synthesis under uncertainty conditions. Springer, London

    MATH  Google Scholar 

  31. Porubov AV, Fradkov AL, Andrievsky BR (2015) Feedback control for some solutions of the sine-Gordon equation. Appl Math Comput 269:17–22

    MathSciNet  Google Scholar 

  32. Shiriaev AS, Egeland O, Ludvigsen H, Fradkov AL (2001) VSS-version of energy-based control for swinging up a pendulum. Syst Control Lett 44:45–56

    Article  MathSciNet  MATH  Google Scholar 

  33. Soufyane A, Afilal M, Aouam T, Chacha M (2010) General decay of solutions of a linear one-dimensional porous-thermoelasticity system with a boundary control of memory type. Nonlinear Anal 72(11):3903–3910

    Article  MathSciNet  MATH  Google Scholar 

  34. Spong MW (1995) The swing up control problem for the acrobot. IEEE Control Syst Mag 15(1):49–55

    Article  Google Scholar 

  35. Stavre R (2016) A boundary control problem for the blood flow in venous insufficiency. The general case. Nonlinear Anal: Real World Appl 29:98–116

    Article  MathSciNet  MATH  Google Scholar 

  36. Tanaka N, Iwamoto H (2007) Active boundary control of an Euler–Bernoulli beam for generating vibration-free state. J Sound Vib 304(3–5):570–586

    Article  MathSciNet  MATH  Google Scholar 

  37. Tian L, Shi Q, Liu Y (2009) Boundary control of viscosity Degasperis–Procesi equation. Nonlinear Anal 71(1–2):382–390

    Article  MathSciNet  MATH  Google Scholar 

  38. Udwadia FE, Mylapilli H (2015) Energy control of nonhomogeneous Toda lattices. Nonlinear Dyn 81(3):1355–1380

    Article  MathSciNet  MATH  Google Scholar 

  39. Yu H, Yu J, Wu H, Li H (2013) Energy-shaping and integral control of the three-tank liquid level system. Nonlinear Dyn 73(4):2149–2156

    Article  MathSciNet  Google Scholar 

  40. Zong X (2014) On the global boundary stabilization of the Camassa–Holm equation. Nonlinear Anal: Real World Appl 15:221–228

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for thoughtful and stimulating comments that helped to improve the quality of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksim Dolgopolik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The result on the finite time convergence of the nonsmooth speed-gradient algorithm for the sine-Gordon equation (Theorem 2) was obtained under the support of RFBR (Grant 17-08-01728). The rest of the theoretical work was performed in the IPME RAS and supported by the Russian Science Foundation (Grant No. 14-29-00142). The numerical study (Sect. 4) was performed in the ITMO University and supported by the Government of Russian Federation (Grant 08-08).

Appendices

Appendix A: Proof of Theorem 1

For any \(\varepsilon > 0\) introduce the Lyapunov-like function

$$\begin{aligned} V(t) = H(z(t)) + \varepsilon {{\mathrm{sign}}}(H(z(t)) - H^*) g(t), \end{aligned}$$

where \({{\mathrm{sign}}}(0) = 0\) and

$$\begin{aligned} g(t) = \int _0^1 x z_t z_x \, \mathrm{d}x. \end{aligned}$$

Applying the inequalities

$$\begin{aligned} \Big | \int _0^1 x z_t z_x \, \mathrm{d}x \Big | \le \int _0^1 |z_t z_x| \, \mathrm{d}x \le \frac{1}{2} \int _0^1 z_t^2 \, \mathrm{d}x + \frac{1}{2} \int _0^1 z_x^2 \, \mathrm{d}x \le \max \left\{ 1, \frac{1}{k} \right\} H(z(t)), \end{aligned}$$

one obtains that

$$\begin{aligned} (1 - \varepsilon k_0) H(z(t)) \le V(t) \le (1 + \varepsilon k_0) H(z(t)) \end{aligned}$$
(12)

for all \(t \ge 0\) and \(\varepsilon \in (0, 1 / k_0)\), where \(k_0 = \max \{ 1, 1 / k \}\). Thus, in particular, the function V(t) is nonnegative for any \(\varepsilon \in (0, 1 / k_0)\).

For any \(t \ge 0\) one has

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} g(t) = \int _0^1 \big ( x z_{tt} z_x + x z_t z_{tx} \big ) \, \mathrm{d}x = \int _0^1 \big ( x z_t z_{tx} + x (k z_{xx} - \beta \sin z) z_x \big ) \, \mathrm{d}x. \end{aligned}$$

Note that

$$\begin{aligned} \int _0^1 x z_t z_{tx} \, \mathrm{d}x = \frac{1}{2} \int _0^1 x (z_t^2)_x \, \mathrm{d}x = \frac{1}{2} z_t(t, 1)^2 - \frac{1}{2} \int _0^1 z_t^2 \, \mathrm{d}x \end{aligned}$$

and

$$\begin{aligned} \int _0^1 x z_{xx} z_x \, \mathrm{d}x = \frac{1}{2} \int _0^1 x (z_x^2)_x \, \mathrm{d}x = \frac{1}{2} z_x(t, 1)^2 - \frac{1}{2} \int _0^1 z_x^2 \, \mathrm{d}x. \end{aligned}$$

Observe also that

$$\begin{aligned}&- \int _0^1 x \sin z z_x \, \mathrm{d}x = \int _0^1 x (\cos z)_x \, \mathrm{d}x = \cos z(t, 1) - \int _0^1 \cos z \, \mathrm{d}x \\&\quad \le \int _0^1 (1 - \cos z) \, \mathrm{d}x \le \frac{1}{2} \int _0^1 z^2 \, \mathrm{d}x \le \frac{2}{\pi ^2} \int _0^1 z_x^2 \, \mathrm{d}x, \end{aligned}$$

where the last inequality is a consequence of Poincaré’s (or Wirtinger’s) inequality (see [16]). Hence, for any \(\sigma > 0\) one has

$$\begin{aligned}&\frac{\mathrm{d}}{\mathrm{d}t} g(t) \le - \int _0^1 \left( \frac{z_t^2}{2} + k \frac{z_x^2}{2} \right) \, \mathrm{d}x + \frac{1}{2} z_t^2(t, 1) + \frac{k}{2} z_x^2(t, 1) \\&\quad + \beta \int _0^1 (1 - \cos z) \, \mathrm{d}x \le - \frac{1}{2} \int _0^1 z_t^2 \, \mathrm{d}x - \left( \frac{k}{2} - \frac{2 (1 + \sigma ) \beta }{\pi ^2} \right) \int _0^1 z_x^2 \, \mathrm{d}x\\&\quad - \sigma \beta \int _0^1 (1 - \cos z) \, \mathrm{d}x + \frac{1}{2} z_t^2(t, 1) + \frac{k}{2} z_x^2(t, 1). \end{aligned}$$

Since by our assumption \(0 \le \beta < k \pi ^2 / 4\), there exists \(\sigma > 0\) such that

$$\begin{aligned} C_0 := \min \left\{ \sigma , 1 - \frac{4(1 + \sigma ) \beta }{k \pi ^2} \right\} > 0. \end{aligned}$$

Consequently, one gets that

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} g(t) \le - C_0 H(t) + \frac{1}{2} z_t^2(t, 1) + \frac{k}{2} z_x^2(t, 1) \end{aligned}$$
(13)

for any \(t \ge 0\). Note also that

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} V(t) = - \gamma k \psi (H(z(t)) - H^*) z_t^2(t, 1) + \varepsilon {{\mathrm{sign}}}(H(z(t)) - H^*) \frac{\mathrm{d}}{\mathrm{d}t} g(t). \end{aligned}$$
(14)

for any \(t \ge 0\) such that \(H(z(t)) \ne H^*\).

Suppose that \(H(z(0)) > H^*\), and fix an arbitrary \(\varDelta \in (0, H(z(0)) - H^*)\). Clearly, there exists \(T_{\varDelta } \in [0, +\infty ]\) such that \(H(z(t)) > H^* + \varDelta \) for any \(t \in [0, T_{\varDelta })\), and \(H(z(t)) \le H^* + \varDelta \) for any \(t \in [T_{\varDelta }, +\infty )\) (see (7)). Our aim is to show that \(T_{\varDelta }\) is finite.

Arguing by reductio ad absurdum, suppose that \(T_{\varDelta } = + \infty \). Denote

$$\begin{aligned} \psi _{\varDelta } := \min \Big \{ \psi (s) \Bigm | s \in \big [ \varDelta , H(z(0)) - H^* \big ] \Big \} > 0 \end{aligned}$$

and

$$\begin{aligned} \varPsi _{\varDelta } := \max \Big \{ \psi (s) \Bigm | s \in \big [ \varDelta , H(z(0)) - H^* \big ] \Big \} > 0 \end{aligned}$$

Then for any \(t \ge 0\) one has \(\varPsi _{\varDelta } \ge \psi (H(z(t)) - H^*) \ge \psi _{\varDelta }\). Therefore, taking into account (14), (13) and (12) one obtains that

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} V(t) \le - \gamma k \psi _{\varDelta } z_t^2(t, 1) - \frac{\varepsilon C_0}{1 + \varepsilon k_0} V(t) + \frac{\varepsilon }{2} z_t^2(t, 1) + \frac{k \varepsilon }{2} \gamma ^2 \varPsi _{\varDelta }^2 z_t^2(t, 1) \end{aligned}$$

for any \(t \ge 0\) and \(\varepsilon \in (0, 1 / k_0)\). Hence, for any sufficiently small \(\varepsilon > 0\) one has

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} V(t) \le - C_{\varepsilon } V(t) \quad \forall t \ge 0, \end{aligned}$$

where \(C_{\varepsilon } := \varepsilon C_0 / (1 + \varepsilon k_0) > 0\). Therefore,

$$\begin{aligned} V(t) \le V(0) e^{- C_{\varepsilon } t} \quad \forall t \ge 0, \end{aligned}$$

which implies that \(V(t) \rightarrow 0\) as \(t \rightarrow \infty \). Consequently, with the use of (12) one obtains that \(H(t) \rightarrow 0\) as \(t \rightarrow +\infty \), which contradicts the definition of \(T_{\varDelta }\) and the fact that \(H^* + \varDelta > 0\). Thus, \(T_{\varDelta } < + \infty \) and \(H(z(t)) < H^* + \varDelta \) for any \(t > T_{\varDelta }\). Hence, \(H(z(t)) \rightarrow H^*\) as \(t \rightarrow + \infty \) due to the fact that \(\varDelta > 0\) was chosen arbitrarily.

Suppose, now, that \(H(z(0)) < H^*\) and \(H(z(t)) \le H^* - \varDelta \) for any \(t \in [0, + \infty )\), where \(\varDelta \in (0, H^* - H(z(0)))\) is arbitrary. Then arguing in a similar way to the case \(H(z(0)) > H^*\), one can show that for any sufficiently small \(\varepsilon > 0\) the following inequality holds true

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} V(t) := \frac{\mathrm{d}}{\mathrm{d}t} H(z(t)) - \varepsilon \frac{\mathrm{d}}{\mathrm{d}t} g(t) \ge C_{\varepsilon } V(t) \quad \forall t \ge 0. \end{aligned}$$

Therefore,

$$\begin{aligned} V(t) \ge V(0) e^{C_{\varepsilon } t} \quad \forall t \ge 0, \end{aligned}$$

which implies that \(V(t) \rightarrow + \infty \) as \(t \rightarrow \infty \). Then applying (12) one obtains that \(H(t) \rightarrow + \infty \), which contradicts the assumption that \(H(z(t) \le H^* - \varDelta \) for any \(t \in [0, + \infty )\). Hence, \(H(z(t)) \rightarrow H^*\) as \(t \rightarrow +\infty \) due to the fact that \(\varDelta > 0\) is arbitrary. \(\square \)

Appendix B: Proof of Theorem 2

For any \(\varepsilon > 0\) introduce the same Lyapunov-like function

$$\begin{aligned} V(t) = H(z(t)) + \varepsilon {{\mathrm{sign}}}(H(z(t)) - H^*) \int _0^1 x z_t z_x \, \mathrm{d}x, \end{aligned}$$

as in the smooth case. Suppose that \(H(z(0)) > H^*\). Then from the fact that

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} H(z(t)) {\left\{ \begin{array}{ll} \le 0, &{} \text {if} \quad H(z(t)) > H^*, \\ \ge 0, &{} \text {if} \quad H(z(t)) < H^* \end{array}\right. } \end{aligned}$$

(see (7)) it follows that there exists \(T \in (0, + \infty ]\) such that \(H(z(t)) > H^*\) for any \(t \in [0,T)\) and \(H(z(t)) = H^*\) for \(t\in [T, +\infty )\). Our aim is to prove that T is finite.

Observe that for any \(t \in [0, T)\) one has

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} V(t) = - \gamma k {{\mathrm{sign}}}(H(z(t)) - H^*) z_t^2(t, 1) + \varepsilon {{\mathrm{sign}}}(H(t) - H^*) \frac{\mathrm{d}}{\mathrm{d}t} \int _0^1 x z_t z_x \, \mathrm{d}x. \end{aligned}$$

Then applying inequalities (13) and (12) one obtains that

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} V(t) \le - \gamma k z_t^2(t, 1) - \frac{\varepsilon C_0}{1 + \varepsilon k_0} V(t) + \frac{\varepsilon }{2} z_t^2(t, 1) + \frac{k \varepsilon }{2} \gamma ^2 z_t^2(t, 1) \end{aligned}$$

for any \(t \in [0, T)\) and \(\varepsilon \in (0, 1)\). Hence, for any sufficiently small \(\varepsilon > 0\) one has

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} V(t) \le - C_{\varepsilon } V(t) \quad \forall t \in [0, T), \end{aligned}$$

where \(C_{\varepsilon } = \varepsilon C_0 / (1 + \varepsilon k_0)\), which yields

$$\begin{aligned} V(t) \le V(0) e^{- C_{\varepsilon } t} \quad \forall t \in [0, T). \end{aligned}$$

Then applying (12) one obtains that

$$\begin{aligned} H(t) \le \frac{V(0)}{1 - \varepsilon k_0} e^{- C_{\varepsilon } t} \quad \forall t \in [0, T). \end{aligned}$$

Hence, with the use of the definition of T one obtains that \(T < + \infty \) and \(H(z(t)) \rightarrow H^*\) as \(t \rightarrow T\) in the case \(H^* > 0\).

Suppose, now, that \(H(z(0)) < H^*\). Then applying inequalities (13) and (12) one obtains that

$$\begin{aligned}&\frac{\mathrm{d}}{\mathrm{d}t} V(t) \ge \gamma k z_t^2(t, 1) + \frac{\varepsilon C_0}{1 + \varepsilon k_0} V(t) \\&\quad - \frac{\varepsilon }{2} z_t^2(t, 1) - \frac{\varepsilon }{2} \gamma ^2 z_t^2(t, 1) \end{aligned}$$

for any \(t \ge 0\) such that \(H(z(t)) < H^*\). Consequently, for any sufficiently small \(\varepsilon \) and for any \(t \ge 0\) such that \(H(z(t)) < H^*\) one has

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} V(t) \ge C_{\varepsilon } V(t), \end{aligned}$$

which implies that

$$\begin{aligned} V(t) \ge V(0) e^{C_{\varepsilon } t} \quad \forall t \ge 0 :H(z(t)) < H^*. \end{aligned}$$

Hence, with the use of (12) one obtains the desired result. \(\square \)

Appendix C: Proof of Theorem 3

Let us prove the theorem in the case of the smooth control law (5). The case of the nonsmooth control law (6) is proved in a similar way.

For any \(\varepsilon > 0\) and \(c > 0\) introduce the Lyapunov-like function

$$\begin{aligned} V(t) = H(z(t)) + \varepsilon {{\mathrm{sign}}}(H(z(t)) - H^*) g(t), \end{aligned}$$

where z is a solution of the problem (1)–(3), \({{\mathrm{sign}}}(0) = 0\), and

$$\begin{aligned} g(t) = \int _0^1 x z_t z_x \, \mathrm{d}x + c \int _0^1 z z_t \, \mathrm{d}x. \end{aligned}$$

Let us obtain some estimates of the function V(t).

Since \(z(t, 0) = 0\) for any \(t \ge 0\), for all \(x \in [0, 1]\) one has

$$\begin{aligned} |z(t, x)| = \left| \int _0^x z_x \, \mathrm{d}x \right| \le \int _0^1 |z_x| \, \mathrm{d}x \le \sqrt{\int _0^1 z_x^2 \, \mathrm{d}x} \end{aligned}$$
(15)

and

$$\begin{aligned} \int _0^1 z^2 \, \mathrm{d}x \le \int _0^1 z_x^2 \, \mathrm{d}x. \end{aligned}$$
(16)

Therefore,

$$\begin{aligned} c \int _0^1 z z_t \, \mathrm{d}x\le & {} \frac{c}{2} \int _0^1 z^2 \, \mathrm{d}x + \frac{c}{2} \int _0^1 z_t^2 \, \mathrm{d}x \le \frac{c}{2} \int _0^1 \big ( z_t^2 + z_x^2 \big ) \, \mathrm{d}x \\\le & {} \max \left\{ c, \frac{c}{k} \right\} H(z(t)). \end{aligned}$$

Note also that

$$\begin{aligned} \Big | \int _0^1 x z_t z_x \, \mathrm{d}x \Big | \le \int _0^1 |z_t z_x| \, \mathrm{d}x \le \frac{1}{2} \int _0^1 z_t^2 \, \mathrm{d}x + \frac{1}{2} \int _0^1 z_x^2 \, \mathrm{d}x \le \max \left\{ 1, \frac{1}{k} \right\} H(z(t)). \end{aligned}$$

Define

$$\begin{aligned} K_0 = \max \left\{ 1, \frac{1}{k} \right\} + \max \left\{ c, \frac{c}{k} \right\} . \end{aligned}$$

Then

$$\begin{aligned} 0 \le (1 - \varepsilon K_0) H(z(t)) \le V(t) \le (1 + \varepsilon K_0) H(z(t)), \end{aligned}$$
(17)

for all \(t \ge 0\) and for any sufficiently small \(\varepsilon > 0\).

Taking into account the fact that

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} H(z(t)) {\left\{ \begin{array}{ll} \le 0, &{} \text {if} \quad H(z(t)) > H^*, \\ \ge 0, &{} \text {if} \quad H(z(t)) < H^* \end{array}\right. } \end{aligned}$$

(see (7)) one obtains that

$$\begin{aligned} \int _0^1 z_x^2 \, \mathrm{d}x \le \frac{2}{k} \max \{ H^*, H(z(0)) \}. \end{aligned}$$

Hence, and from (15) it follows that the function z(tx) is uniformly bounded for all \(t \ge 0\) and \(x \in [0, 1]\). Recall that \(\varPi \in C^2(\mathbb {R})\) and \(\varPi '(0) = 0\). Therefore, there exists \(L > 0\) such that

$$\begin{aligned} | \varPi '(z(t, x)) | \le L |z(t, x)| \quad \forall t \ge 0 \quad \forall x \in [0, 1]. \end{aligned}$$
(18)

For any \(t \ge 0\) such that \(H(z(t)) \ne H^*\) one has

$$\begin{aligned}&\frac{\mathrm{d}}{\mathrm{d}t} \int _0^1 x z_x z_t \, \mathrm{d}x = \int _0^1 x z_{tx} z_t \, \mathrm{d}x + \int _0^1 x z_x (k z_{xx} - \varPi '(z)) \, \mathrm{d}x \nonumber \\&\quad = - \frac{1}{2} \int _0^1 \big ( z_t^2 + k z_x^2 \big ) \, \mathrm{d}x + \frac{1}{2} \big ( z_t^2(t, 1) + k z_x^2(t, 1) \big )\nonumber \\&\qquad \,\, + \int _0^1 \left( - \frac{d}{\mathrm{d}x}\Big ( x \varPi (z) \Big ) + \varPi (z) \right) \, \mathrm{d}x \nonumber \\&\quad = - \frac{1}{2} \int _0^1 \big ( z_t^2 + k z_x^2 \big ) \, \mathrm{d}x + \frac{1}{2} \big ( z_t^2(t, 1) + k z_x^2(t, 1) \big ) + \int _0^1 \varPi (z) \, \mathrm{d}x - \varPi (z(t, 1)) \nonumber \\&\quad \le - \frac{1}{2} \int _0^1 \big ( z_t^2 + k z_x^2 \big ) \, \mathrm{d}x + \int _0^1 \varPi (z) \, \mathrm{d}x + \frac{1}{2} \big ( z_t^2(t, 1) + k z_x^2(t, 1) \big ), \end{aligned}$$
(19)

and

$$\begin{aligned}&\frac{\mathrm{d}}{\mathrm{d}t} \int _0^1 z z_t \, \mathrm{d}x = \int _0^1 z_t^2 \, \mathrm{d}x + \int _0^1 z (k z_{xx} - \varPi '(z)) \, \mathrm{d}x \\&\quad = \int _0^1 z_t^2 \, \mathrm{d}x + k z(t, 1) z_x(t, 1) - k \int _0^1 z_x^2 \, \mathrm{d}x - \left( 1 + \frac{k}{2 L} \right) \int _0^1 z \varPi '(z) \, \mathrm{d}x \\&\qquad + \frac{k}{2 L} \int _0^1 z \varPi '(z) \, \mathrm{d}x \le \int _0^1 z_t^2 \, \mathrm{d}x + k z(t, 1) z_x(t, 1) - k \int _0^1 z_x^2 \, \mathrm{d}x \\&\qquad - \eta \left( 1 + \frac{k}{2 L} \right) \int _0^1 \varPi (z) \, \mathrm{d}x + \frac{k}{2 L} \int _0^1 z \varPi '(z) \, \mathrm{d}x. \end{aligned}$$

Observe that

$$\begin{aligned} | k z(t, 1) z_x(t, 1) | \le \frac{k}{2} z^2(t, 1) + \frac{k}{2} z_x^2(t, 1) \le \frac{k}{2} \int _0^1 z_x^2 \, \mathrm{d}x + \frac{k}{2} z_x^2(t, 1). \end{aligned}$$

(see (15)). Hence, one obtains that

$$\begin{aligned}&\frac{\mathrm{d}}{\mathrm{d}t} \int _0^1 z z_t \, \mathrm{d}x \le \int _0^1 z_t^2 \, \mathrm{d}x - \frac{k}{2} \int _0^1 z_x^2 \, \mathrm{d}x \\&\quad - \eta \left( 1 + \frac{k}{2 L} \right) \int _0^1 \varPi (z) \, \mathrm{d}x + \frac{k}{2 L} \int _0^1 z \varPi '(z) \, \mathrm{d}x + \frac{k}{2} z_x^2(t, 1). \end{aligned}$$

Then applying (18) and (16) one gets that

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \int _0^1 z z_t \, \mathrm{d}x \le \int _0^1 z_t^2 \, \mathrm{d}x - \eta \left( 1 + \frac{k}{2 L} \right) \int _0^1 \varPi (z) \, \mathrm{d}x + \frac{k}{2} z_x^2(t, 1). \end{aligned}$$
(20)

Recall that \(\eta \ge 2\). Therefore, \(c \eta ( 1 + k / 2 L ) > 1\) for some \(c \in (0, 1/2)\). Hence, taking into account (19) and (20) one obtains that

$$\begin{aligned}&\frac{\mathrm{d}}{\mathrm{d}t} g(t) \le - \left( \frac{1}{2} - c \right) \int _0^1 z_t^2 \, \mathrm{d}x - \frac{k}{2} \int _0^1 z_x^2 \, \mathrm{d}x - \left( c \eta \Big ( 1 + \frac{k}{2 L} \Big ) - 1 \right) \int _0^1 \varPi (z) \, \mathrm{d}x \\&\quad + \frac{k}{2}(1 + c) z_x^2(t, 1) + \frac{1}{2} z_t^2(t, 1) \le - C_0 H(z(t)) + \frac{1}{2} z_t^2(t, 1) + \frac{k}{2}(1 + c) z_x^2(t, 1), \end{aligned}$$

for any \(t \ge 0\) such that \(H(z(t)) \ne H^*\), where

$$\begin{aligned} C_0 = \min \left\{ 1 - 2c, c \eta \Big ( 1 + \frac{k}{2 L} \Big ) - 1 \right\} > 0. \end{aligned}$$

Therefore, applying (17) one obtains that

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} V(t)\le & {} - C_{\varepsilon } V(t) - \gamma k \psi (H(z(t)) - H^*) z_t^2(t, 1) \\&+ \frac{\varepsilon }{2} z_t^2(t, 1) + \frac{\varepsilon }{2}(1 + c) k \gamma ^2 \psi (H(z(t)) - H^*)^2 z_t^2(t, 1) \end{aligned}$$

for any \(t \ge 0\) such that \(H(z(t)) > H^*\), and

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} V(t)\ge & {} C_{\varepsilon } V(t) + \gamma k |\psi (H(z(t)) - H^*)| z_t^2(t, 1) \\&- \frac{\varepsilon }{2} z_t^2(t, 1) - \frac{\varepsilon }{2}(1 + c) k \gamma ^2 \psi (H(z(t)) - H^*)^2 z_t^2(t, 1) \end{aligned}$$

for any \(t \ge 0\) such that \(H(z(t)) < H^*\), where \(C_{\varepsilon } = \varepsilon C_0 / (1 + \varepsilon K_0)\). Then arguing in the same way as in the proof of Theorem 1, one can easily obtain the desired result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgopolik, M., Fradkov, A.L. & Andrievsky, B. Boundary energy control of a system governed by the nonlinear Klein–Gordon equation. Math. Control Signals Syst. 30, 7 (2018). https://doi.org/10.1007/s00498-018-0213-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00498-018-0213-5

Keywords

Navigation