Skip to main content
Log in

Stabilization of a suspension bridge with locally distributed damping

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We study a nonlocal evolution equation modeling the deformation of a bridge, either a footbridge or a suspension bridge. Contrarily to the previous literature, we prove the exponential asymptotic stability of the considered model with a small amount of damping (namely, on a small collar around the whole boundary) which represents less cost of material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alabau-Boussouira F (2005) Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems. Appl Math Optim 51(1):61–105

    Article  MathSciNet  Google Scholar 

  2. Alabau-Boussouira F (2010) A unified approach via convexity for optimal energy decay rates of finite and infinite dimensional vibrating damped systems with applications to semi-discretized vibrating damped systems. J Differ Equ 248(6):1473–1517

    Article  MathSciNet  Google Scholar 

  3. Al-Gwaiz M, Benci V, Gazzola F (2014) Bending and stretching energies in a rectangular plate modeling suspension bridges. Nonlinear Anal 106:181–734

    Article  MathSciNet  Google Scholar 

  4. Ammari K, Tucsnak M, Tenenbaum GA (2007) Sharp geometric condition for the boundary exponential stabilizability of a square plate by moment feedbacks only. In: Control of coupled partial differential equations. International series of numerical mathematics, vol 155. Birkhäuser, Basel, pp 111–711

  5. Ammari K, Tucsnak M (2000) Stabilization of Bernoulli–Euler beams by means of a pointwise feedback force. SIAM J Control Optim 39(4):11601–71181

    Article  MathSciNet  Google Scholar 

  6. Avalos G, Geredeli PG, Webster JT (2016) Finite dimensional smooth attractor for the Berger plate with dissipation acting on a portion of the boundary. Commun Pure Appl Anal 15(6):2301–2328

    Article  MathSciNet  Google Scholar 

  7. Amman OH, von Kármán T, Woodruff GB (1941) The failure of the Tacoma Narrows Bridge. Technical Report, Federal Works Agency, Washington, D.C

  8. Berger HM (1955) A new approach to the analysis of large deflections of plates. J Appl Mech 22:4651–7472

    MathSciNet  Google Scholar 

  9. Bochicchio I, Giorgi C, Vuk E (2010) Long-term damped dynamics of the extensible suspension bridge. Int J Differ Equ 2010:420.1–420.19. https://doi.org/10.1155/2010/383420

    Article  MathSciNet  MATH  Google Scholar 

  10. Burgreen D (1951) Free vibrations of a pin-ended column with constant distance between pin ends. J Appl Mech 18:1351–7139

    Google Scholar 

  11. Cavalcanti MM, Domingos Cavalcanti VN, Fukuoka R, Toundykov D (2014) Unified approach to stabilization of waves on compact surfaces by simultaneous interior and boundary feedbacks of unrestricted growth. Appl Math Optim 69(1):83–122

    Article  MathSciNet  Google Scholar 

  12. Cavalcanti MM, Domingos Cavalcanti VN, Lasiecka I (2007) Wellposedness and optimal decay rates for wave equation with nonlinear boundary damping-source interaction. J Differ Equ 236:407–459

    Article  Google Scholar 

  13. Cavalcanti MM, Lasiecka I, Toundykov D (2012) Wave equation with damping affecting only a subset of static Wentzell boundary is uniformly stable. Trans Am Math Soc 364(11):5693–5713

    Article  MathSciNet  Google Scholar 

  14. Conlon L (2008) Differentiable manifolds. Modern Birkhäuser classics, 2nd edn. Birkhäuser Boston, Inc., Boston

    Google Scholar 

  15. Chueshov I, Lasiecka I (2007) Long-time dynamics of von Karman semi-flows with non-linear boundary/interior damping. J Differ Equ 233(1):421–786

    Article  MathSciNet  Google Scholar 

  16. Chueshov I, Lasiecka I, Webster JT (2014) Attractors for delayed, nonrotational von Karman plates with applications to flow-structure interactions without any damping. Commun Partial Differ Equ 39(11):19651–71997

    Article  MathSciNet  Google Scholar 

  17. Chueshov I, Eller M, Lasiecka I (2002) On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation. Commun Partial Differ Equ 27(9–10):1901–1951

    Article  MathSciNet  Google Scholar 

  18. Chueshov I, Lasiecka I, Toundykov D (2008) Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete Contin Dyn Syst 20(3):4591–7509

    MathSciNet  MATH  Google Scholar 

  19. Chueshov I, Lasiecka I, Toundykov D (2009) Global attractor for a wave equation with nonlinear localized boundary damping and a source term of critical exponent. J Dyn Differ Equ 21(2):2691–7314

    Article  MathSciNet  Google Scholar 

  20. Chueshov I, Lasiecka I (2010) Von Karman evolution equations. Well-posedness and long-time dynamics. Springer monographs in mathematics. Springer, New York, pp xiv+766. ISBN: 978-0-387-87711-2

  21. Daoulatli M, Lasiecka I, Toundykov D (2009) Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions. Discrete Contin Dyn Syst Ser S 2(1):67–94

    Article  MathSciNet  Google Scholar 

  22. Eller M, Toundykov D (2015) Semiglobal exact controllability of nonlinear plates. SIAM J Control Optim 53(4):24801–72513

    Article  MathSciNet  Google Scholar 

  23. Ferrero A, Gazzola F (2015) A partially hinged rectangular plate as a model for suspension bridges. Discrete Contin Dyn Syst A 35:5879–5908

    Article  MathSciNet  Google Scholar 

  24. Ferreira V Jr, Gazzola F, Moreira dos Santos E (2016) Instability of modes in a partially hinged rectangular plate. J Differ Equ 261(11):6302–6340

    Article  MathSciNet  Google Scholar 

  25. Geredeli PG, Lasiecka I (2013) Asymptotic analysis and upper semicontinuity with respect to rotational inertia of attractors to von Karman plates with geometrically localized dissipation and critical nonlinearity. Nonlinear Anal 91:72–92

    Article  MathSciNet  Google Scholar 

  26. Geredeli PG, Lasiecka I, Webster JT (2013) Smooth attractors of finite dimension for von Karman evolutions with nonlinear frictional damping localized in a boundary layer. J Differ Equ 254(3):1193–1229

    Article  MathSciNet  Google Scholar 

  27. Geredeli PG, Webster JT (2016) Qualitative results on the dynamics of a Berger plate with nonlinear boundary damping. Nonlinear Anal Real World Appl 31:227–256

    Article  MathSciNet  Google Scholar 

  28. Glover J, Lazer AC, Mckenna PJ (1989) Existence and stability of of large scale nonlinear oscillation in suspension bridges. Z Angew Math Phys 40:172–200

    Article  MathSciNet  Google Scholar 

  29. Howell JS, Lasiecka I, Webster JT (2016) Quasi-stability and exponential attractors for a non-gradient system–applications to piston-theoretic plates with internal damping. Evol Equ Control Theory 5(4):5671–7603

    MathSciNet  MATH  Google Scholar 

  30. Kim JU (1992) Exact semi-internal control of an Euler–Bernoulli equation SIAM. J Control Optim 30(5):1001–1023

    Article  MathSciNet  Google Scholar 

  31. Knightly GH, Sather D (1974) Nonlinear buckled states of rectangular plates. Arch Ration Mech Anal 54:3561–7372

    Article  MathSciNet  Google Scholar 

  32. Komornik V (1994) On the nonlinear boundary stabilization of Kirchhoff plates. NoDEA 1:323–337

    Article  MathSciNet  Google Scholar 

  33. Lazer AC, McKenna PJ (1990) Large-amplitude periodic oscillations in suspension bridges: some new connections with non-linear analysis. SIAM Rev 32(4):537–578

    Article  MathSciNet  Google Scholar 

  34. Lasiecka I, Toundykov D (2006) Energy decay rates for the semilinear wave equation with nonlinear localized damping and source terms. Nonlinear Anal 64(8):1757–1797

    Article  MathSciNet  Google Scholar 

  35. Lasiecka I, Webster J (2014) Eliminating flutter for clamped von Karman plates immersed in subsonic flows. Commun Pure Appl Anal 13(5):19351–71969

    Article  MathSciNet  Google Scholar 

  36. Lasiecka I, Webster JT (2016) Feedback stabilization of a fluttering panel in an inviscid subsonic potential flow. SIAM J Math Anal 48(3):1848–1891

    Article  MathSciNet  Google Scholar 

  37. Lions JL (1988) Contrôlabilité exacte des systèmes distribués. Masson, Paris

    MATH  Google Scholar 

  38. Mansfield EH (1989) The bending and stretching of plates, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  39. McKenna PJ, Walter W (1987) Non-linear oscillations in a suspension bridge. Arch Ration Mech Anal 98(2):167–177

    Article  Google Scholar 

  40. McKenna PJ, Walter W (1990) Travelling waves in a suspension bridge. SIAM J Appl Math 50(3):703–715

    Article  MathSciNet  Google Scholar 

  41. Messaoudi SA, Mukiawa SE (2017) A suspension bridge problem: existence and stability. In: Abualrub T, Jarrah A, Kallel S, Sulieman H (eds) Mathematics across contemporary sciences. AUS-ICMS 2015. Springer proceedings in mathematics & statistics, vol 190. Springer, Cham

    Google Scholar 

  42. Nakao M (2001) Energy decay for the linear and semilinear wave equations in exterior domains with some localized dissipations. Math Z 4:781–797

    Article  MathSciNet  Google Scholar 

  43. Puel JP, Tucsnak M (1994) Existence globale de solutions fortes pour le système complet des équations de von Kármán dynamiques (French) [Global existence of strong solutions for the full system of dynamic von Kármán equations] C R Acad Sci Paris Sér I Math 318(5):449–454

  44. Scott R (2001) In the wake of Tacoma. Suspension bridges and the quest for aerodynamic stability. ASCE, Reston

    Book  Google Scholar 

  45. Tucsnak M (1996) Semi-internal stabilization for a non-linear Bernoulli–Euler equation. Math Methods Appl Sci 19:897–907

    Article  MathSciNet  Google Scholar 

  46. Triggiani R, Yao PF (2002) Carleman estimates with no lower-Orderterms for general Riemannian wave equations. Global uniqueness andobservability in one shot. Appl Math Optim 46:331–375 (Special issue dedicated to J. L. Lions)

    Article  MathSciNet  Google Scholar 

  47. Ventsel E, Krauthammer T (2001) Thin plates and shells: theory: analysis, and applications. CRC Press, Cambridge

    Book  Google Scholar 

  48. Villaggio P (1997) Mathematical models for elastic structures. Cambridge University Press, Cambridge

    Book  Google Scholar 

  49. Woinowsky-Krieger S (1950) The effect of an axial force on the vibration of hinged bars. J Appl Mech 17:351–736

    MathSciNet  MATH  Google Scholar 

  50. Zuazua E (1990) Exponential decay for semilinear wave equations with localized damping. Commun Partial Differ Equ 15(2):205–235

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wellington J. Corrêa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research of Marcelo M. Cavalcanti partially supported by the CNPq Grant 300631/2003-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavalcanti, M.M., Corrêa, W.J., Fukuoka, R. et al. Stabilization of a suspension bridge with locally distributed damping. Math. Control Signals Syst. 30, 20 (2018). https://doi.org/10.1007/s00498-018-0226-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00498-018-0226-0

Keywords

Navigation