Skip to main content
Log in

The set of controllable multi-input systems is generically convex

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

In this paper, we investigate connectedness and convexity properties of the subspace \(\mathbf {L}_{n,m}^c(\mathbb {R})\) of controllable input pairs \((A,B)\in \mathbf {L}_{n,m}(\mathbb {R}):= \mathbb {R}^{n\times n}\times \mathbb {R}^{n\times m}\). We introduce three restricted convexity properties (“dense”, “almost sure” and “generic” convexity). In order to prove that the space \(\mathbf {L}_{n,m}^c(\mathbb {R})\) possesses these properties, we study the intersection of straight lines in \(\mathbf {L}_{n,m}(\mathbb {R})\) with the algebraic variety of uncontrollable input pairs in \(\mathbf {L}_{n,m}(\mathbb {R})\). While in the single-input case (\(m=1\)), the space \(\mathbf {L}_{n,1}^c(\mathbb {R})\) consists of two connected components, we prove that the space \(\mathbf {L}_{n,m}^c(\mathbb {R})\) is generically convex in the multi-input case. This is our main result. It directly implies Brockett’s theorem that \(\mathbf {L}_{n,m}^c(\mathbb {R})\) is pathwise connected if \(m\ge 2\). As another application, we derive the theorem of Hazewinkel and Kalman about the non-existence of continuous canonical forms for multi-input systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See Remark 3.2.

References

  1. Aleman A (1985) On some generalizations of convex sets and convex functions. Math Rev Anal Numér et de Théor de l’Approx 14:1–6

    MathSciNet  MATH  Google Scholar 

  2. Blaga L, Kolumbán I (1994) Optimization on closely convex sets. In: Komlósi T, Rapcsák S, Schaible S (eds) Generalized convexity. Lecture notes in economics and mathematical systems, vol 405. Springer, Berlin, pp 19–34

  3. Bot R, Grad S-M, Wanka G (2007) Fenchel’s duality theorem for nearly convex functions. J Optim Theory Appl 132:509–515

    Article  MathSciNet  MATH  Google Scholar 

  4. Breckner W, Kassay G (1997) A systematization of convexity concepts for sets and functions. J Convex Anal 4:109–127

    MathSciNet  MATH  Google Scholar 

  5. Brieskorn E (1983) Lineare algebra und Analytische Geometrie, vol I. Vieweg, Braunschweig

    MATH  Google Scholar 

  6. Brockett RW (July 1977) The geometry of the set of controllable linear systems. Research Reports of Automatic Control Laboratory 24, Nagoya University, Faculty of Engineering

  7. Brunovský P (1970) A classification of linear controllable systems. Kybernetika 3:137–187

    MathSciNet  MATH  Google Scholar 

  8. Federer H (1969) Geometric measure theory. Springer, Berlin

    MATH  Google Scholar 

  9. Fuhrmann PA (1996) A polynomial approach to linear algebra. Springer, New York

    Book  MATH  Google Scholar 

  10. Fuhrmann PA, Helmke U (2015) The mathematics of networks of linear systems. Springer, New York

    Book  MATH  Google Scholar 

  11. Green J, Gustin W (1950) Quasiconvex sets. Can J Math 2:489–507

    Article  MathSciNet  MATH  Google Scholar 

  12. Hadjisavvas N, Komlósi S, Schaible SS (eds) (2005) Handbook of generalized convexity and generalized monotonicity. Springer, New York

    MATH  Google Scholar 

  13. Hazewinkel M (1977) Moduli and canonical forms for linear dynamical systems III: the algebraic geometric case. In: Proceedings of the 76th conference on geometric control theory. Mathematical Sciences Publishers, Berkeley pp 291–336

  14. Hazewinkel M (1977) Moduli and canonical forms of linear dynamical systems II: the topological case. Math Syst Theory 10:363–385

    Article  MathSciNet  MATH  Google Scholar 

  15. Hazewinkel M, Kalman RE (1976) On invariants, canonical forms and moduli for linear constant finite dimensional dynamical systems. In: Marchesini G, Mitter SK (eds) Mathematical systems theory. Proceedings of the international symposium held in Udine, Italy. Lecture notes in economics and mathematical systems, No 131. Springer, Berlin, pp 48–60

  16. Himmelberg J (1972) Fixed points of compact multifunctions. J Math Anal Appl 38:205–207

    Article  MathSciNet  MATH  Google Scholar 

  17. Hosoe S, Matsumoto K (1979) On the irreducibility condition in the structural controllability theorem. IEEE Trans Autom Control 24:933–966

    Article  MathSciNet  MATH  Google Scholar 

  18. Lin C-T (1974) Structural controllability. IEEE Trans Autom Control 19:201–208

    Article  MathSciNet  MATH  Google Scholar 

  19. Minty G (1961) On the maximal domain of a “monotone” function. Mich Math J 8:135–137

    Article  MathSciNet  MATH  Google Scholar 

  20. Moffat SM, Moursi WM, Wang X (2016) Nearly convex sets: fine properties and domains or ranges of subdifferentials of convex functions. Math Program 160:193–223

    Article  MathSciNet  MATH  Google Scholar 

  21. Polderman JW, Willems JC (1998) Introduction to mathematical systems theory. A behavioral approach. Springer, New York

    Book  MATH  Google Scholar 

  22. Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  23. Rosenbrock HH (1970) State space and multivariable theory. Wiley, New York

    MATH  Google Scholar 

  24. Tuy H (1964) Sur les inégalités linéaires. Colloq Math 2:107–123

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Hinrichsen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinrichsen, D., Oeljeklaus, E. The set of controllable multi-input systems is generically convex. Math. Control Signals Syst. 31, 265–278 (2019). https://doi.org/10.1007/s00498-019-0243-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-019-0243-7

Keywords

Navigation