Skip to main content

Advertisement

Log in

Input-to-state stabilization of an ODE-wave system with disturbances

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

In this paper, we consider the input-to-state stabilization of an ODE-wave feedback-connection system with Neumann boundary control, where the left end displacement of the wave equation enters the ODE, while the output of the ODE is fluxed into boundary of the wave equation. The disturbance is appeared as a nonhomogeneous term in the ODE. Based on the backstepping approach, a state feedback control law is designed to guarantee the exponential input-to-state stability of the closed-loop system. The resulting closed-loop system has been shown to be well-posed by the semigroup approach. Moreover, we construct an exponentially convergent state observer based on which an output feedback control law is obtained, and the closed-loop system is proved to be input-to-state stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmed-Ali T, Giri F, Krstic M, Lamnabhi-Lagarrigue F (2015) Observer design for a class of nonlinear ODE-PDE cascade systems. Syst Control Lett 83(3):19–27

    Article  MathSciNet  MATH  Google Scholar 

  2. Antonio Susto G, Krstic M (2010) Control of PDE-ODE cascades with Neumann interconnections. J Franklin Inst 347(1):284–314

    Article  MathSciNet  MATH  Google Scholar 

  3. Argomedo FB, Prieur C, Witrant E, Brémond S (2013) A strict control lyapunov function for a diffusion equation with time-varying distributed coefficients. IEEE Trans Autom Control 58(2):290–303

    Article  MathSciNet  MATH  Google Scholar 

  4. Argomedo F B, Witrant E, Prieur C (June 2012) \(d^1\)-input-to-state stability of a time varying nonhomogeneous diffusive equation subject to boundary disturbances. In: Proceedings of American Control Conference, pages 2978–2983, Montreal, QC, Canada

  5. Cai X, Bekeiaris-Liberis N, Krstic M (2018) Input-to-state stability and inverse optimality of linear time-varying-delay predictor feedbacks. IEEE Trans Autom Control 63(1):233–240

    Article  MathSciNet  MATH  Google Scholar 

  6. Chaillet A, Detorakis GI, Palfi S, Senova S (2017) Robust stabilization of delayed neural fields with partial measurement and actuation. Automatica 83(10):262–274

    Article  MathSciNet  MATH  Google Scholar 

  7. Dashkovskiy S, Mironchenko A (2013) Input-to-state stability of infinite dimensional control systems. Math Control Signals Syst 25(1):1–35

    Article  MathSciNet  MATH  Google Scholar 

  8. Feng H, Guo B-Z (2017) A new active disturbance rejection control to output feedback stabilization for a one-dimensional anti-stable wave equation with disturbance. IEEE Trans Autom Control 62(8):3774–3787

    Article  MathSciNet  MATH  Google Scholar 

  9. Feng H, Guo B-Z (2017) New unknown input observer and output feedback stabilization for uncertain heat equation. Automatica 86:1–10

    Article  MathSciNet  MATH  Google Scholar 

  10. Gu J-J, Wang J-M (2018) Sliding-mode control of the Orr-Sommerfeld equation cascaded by both squire equation and ode in the presence of boundary disturbances. SIAM J Control Optim 56(2):837–867

    Article  MathSciNet  MATH  Google Scholar 

  11. Guiver C, Logemann H, Opmeer MR (2019) Infinite-dimensional Lur’e systems: input-to-state stability and convergence properties. SIAM J Control Optim 57(1):334–365

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo B-Z (2001) Riesz basis approach to the stabilization of a flexible beam with a tip mass. SIAM J Control Optim 39(6):1736–1747

    Article  MathSciNet  MATH  Google Scholar 

  13. Guo B-Z, Liu J-J, Alfhaid AS, Younas AMM, Asiri A (2015) The active disturbance rejection control approach to stabilisation of coupled heat and ODE system subject to boundary control matched disturbance. Int J Control 88(8):1554–1564

    Article  MathSciNet  MATH  Google Scholar 

  14. Han J (2009) From PID to active disturbance rejection control. IEEE Trans Industr Electron 56(3):900–906

    Article  Google Scholar 

  15. Hasan A, Aamo OM, Krstic M (2016) Boundary observer design for hyperbolic PDE-ODE cascade systems. Automatica 68(6):75–86

    Article  MathSciNet  MATH  Google Scholar 

  16. Jacob B, Nabiullin R, Partington JR, Schwenninger FL (2018) Infinite-dimensional input-to-state stability and Orlicz spaces. SIAM J Control Optim 56(2):868–889

    Article  MathSciNet  MATH  Google Scholar 

  17. Kang W, Fridman E (2016) Sliding mode control of Schrödinger equation-ODE in the presence of unmatched disturbances. Syst Control Lett 98(10):65–73

    Article  MATH  Google Scholar 

  18. Karafyllis I, Krstic M (2016) ISS with respect to boundary disturbances for 1-D parabolic PDEs. IEEE Trans Autom Control 61(12):3712–3724

    Article  MathSciNet  MATH  Google Scholar 

  19. Karafyllis I, Krstic M (2017) ISS in different norms for 1-D parabolic PDEs with boundary disturbances. SIAM J Control Optim 55(3):1716–1751

    Article  MathSciNet  MATH  Google Scholar 

  20. Karafyllis I, Krstic M (2018) Decay estimates for 1-D parabolic PDEs with boundary disturbances. ESAIM: Control Optim Calculus Var 24(4):1511–1540

    MathSciNet  MATH  Google Scholar 

  21. Karafyllis I, Krstic M (2019) Input-to-state stability for PDEs. Communications and control Engineering. Springer, Berlin

    MATH  Google Scholar 

  22. Karafyllis I, Krstic M (2019) Small-gain-based boundary feedback design for global exponential stabilization of one-dimensional semilinear parabolic PDEs. SIAM J Control Optim 57(3):2016–2036

    Article  MathSciNet  MATH  Google Scholar 

  23. Krstic M (2009) Delay compensation for nonlinear, adaptive, and PDE systems. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  24. Liu J-J, Wang J-M (2017) Boundary stabilization of a cascade of ODE-wave systems subject to boundary control matched disturbance. Int J Robust Nonlinear Control 27(2):252–280

    Article  MathSciNet  MATH  Google Scholar 

  25. Mironchenko A (2016) Local input-to-state stability: characterizations and counterexamples. Syst Control Lett 87(4):23–28

    Article  MathSciNet  MATH  Google Scholar 

  26. Mironchenko A, Ito H (2015) Construction of lyapunov functions for interconnected parabolic systems: an iISS approach. SIAM J Control Optim 53(6):3364–3382

    Article  MathSciNet  MATH  Google Scholar 

  27. Mironchenko A, Karafyllis I, Krstic M (2019) Monotonicity methods for input-to-state stability of nonlinear parabolic PDEs with boundary disturbances. SIAM J Control Optim 57(1):510–532

    Article  MathSciNet  MATH  Google Scholar 

  28. Mironchenko A, Wirth F (2018) Characterizations of input-to-state stability for infinite-dimensional systems. IEEE Trans Autom Control 63(6):1692–1707

    Article  MathSciNet  MATH  Google Scholar 

  29. Orlov YV (2009) Discontinuous systems Lyapunov analysis and robust synthesis under uncertainty conditions. Communications and Control Engineering. Springer-Verlag, London

    MATH  Google Scholar 

  30. Orlov YV, Utkin VI (1987) Sliding mode control in infinite-dimensional systems. Automatica 23(6):753–757

    Article  MathSciNet  MATH  Google Scholar 

  31. Pisano A, Orlov Y (2017) On the ISS properties of a class of parabolic DPS’ with discontinuous control using sampled-in-space sensing and actuation. Automatica 81:447–454

    Article  MathSciNet  MATH  Google Scholar 

  32. Ren B, Wang J-M, Krstic M (2013) Stabilization of an ODE-Schrödinger cascade. Syst Control Lett 62(6):503–510

    Article  MATH  Google Scholar 

  33. Sontag ED (1989) Smooth stabilization implies coprime factorization. IEEE Trans Autom Control 34(4):435–443

    Article  MathSciNet  MATH  Google Scholar 

  34. Su L, Guo W, Wang J-M, Krstic M (2017) Boundary stabilization of wave equation with velocity recirculation. IEEE Trans Autom Control 62(9):4760–4767

    Article  MathSciNet  MATH  Google Scholar 

  35. Su L, Wang J-M, Krstic M (2018) Boundary feedback stabilization of a class of coupled hyperbolic equations with nonlocal terms. IEEE Trans Autom Control 63(8):2633–2640

    Article  MathSciNet  MATH  Google Scholar 

  36. Tang S, Xie C (2011) Stabilization for a coupled PDE-ODE control system. J Franklin Inst 348(8):2142–2155

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang J-M, Liu J-J, Ren B, Chen J (2015) Sliding mode control to stabilization of cascaded heat PDE-ODE systems subject to boundary control matched disturbance. Automatica 52:23–34

    Article  MathSciNet  MATH  Google Scholar 

  38. Zheng J, Lhachemi H, Zhu G, Saussié D (2018) ISS with respect to boundary and in-domain disturbances for a coupled beam-string system. Math Control Signals Syst 30(4):21

    Article  MathSciNet  MATH  Google Scholar 

  39. Zheng J, Zhu G (2018) Input-to-state stability with respect to boundary disturbances for a class of semi-linear parabolic equations. Automatica 97:271–277

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhou H-C, Feng H (2018) Disturbance estimator based output feedback exponential stabilization for Euler-Bernoulli beam equation with boundary control. Automatica 91:79–88

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhou H-C, Guo W (2019) Output feedback exponential stabilization of one-dimensional wave equation with velocity recirculation. IEEE Trans Autom Control 61(11):4599–4606

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Min Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Input-to-state stability for infinite-dimensional systems

This work is partly supported by the National Natural Science Foundation of China with Grant/Award Number: 61673061.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YL., Wang, JM. & Li, D. Input-to-state stabilization of an ODE-wave system with disturbances. Math. Control Signals Syst. 32, 489–515 (2020). https://doi.org/10.1007/s00498-020-00266-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-020-00266-8

Keywords