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An Asymptotic Scaling Analysis of LQ Performance for
an Approximate Adaptive Control Design*

M. French,! Cs. Szepesvari, and E. Rogers'

Abstract. We consider the adaptive tracking problem for a chain of inte-
grators, where the uncertainty is static and functional. The uncertainty is specified
by L?/L® or weighted L?/L* norm bounds. We analyse a standard Lyapunov-
based adaptive design which utilises a function approximator to induce a para-
metric uncertainty, on which the adaptive design is completed. Performance is
measured by a modified LQ cost functional, penalising both the tracking error
transient and the control effort. With such a cost functional, it is shown that
a standard control design has divergent performance when the resolution of a
“mono-resolution” approximator is increased. The class of “mono-resolution”
approximators includes models popular in applications. A general construction
of a class of approximators and their associated controllers which have a uni-
formly bounded performance independent of the resolution of the approximator
is given.

Key words. Adaptive control, Function approximation, LQ performance.

1. Introduction

The use of function approximators within adaptive control designs has been pop-
ular since the publication of the papers [SS] and [T]. The idea is to use standard
adaptive designs for problems which depend on non-parameterised uncertainties,
by utilising function approximators to induce an appropriate approximate param-
eterisation of unknown system functions. The non-parametric uncertainty has then
been converted into an uncertainty in the parameters of the function approxi-
mator, to which the standard adaptive designs can be applied, whilst the inherent
approximation error is simply treated as a disturbance acting on the system and
the standard robust modifications [NA] to the adaptive laws (dead-zones, projec-
tions, o modification, etc.) are made to ensure stability.

It is thus widely appreciated that function approximator-based adaptive
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control designs are essentially robust adaptive controllers, with the additional
twist that in general the approximation can only be valid over compact domains if
a finite-dimensional model is utilised. This gives the theory a semi-global charac-
teristic, whereby the transient must be constrained a priori to lie within the
model’s compact domain, either by high gain robust terms (often within a sliding
mode framework), by high adaption rates or by limiting the uncertainty. By care-
fully considering the spatial growth of the uncertainty, it is also possible to give
global designs based on models with dynamically varying dimension [FSR2].
Designs are available for systems with matched uncertainties and systems in the
strict feedback form and output feedback form, see e.g. [F].

Despite the large number of adaptive designs based on function approxi-
mators given in the literature, e.g. [SS], [YL] and [CK], little attention has been
paid to features (other than the semi-globality) of the approximation theoretic de-
signs which do not appear in the analogous parametric robust adaptive theory.
One notable exception to this point is the work in [CS], where a design is given
which is in some sense adaptive to the smoothness of the system.

In this paper we demonstrate that there are fundamental questions which
arise in the approximate adaptive theory which have no analogue in the para-
metric robust adaptive theory. These questions centre around the first stage of an
approximate adaptive approach: namely the choice of model (i.e. the function ap-
proximator). The fundamental question we address is whether increasing the res-
olution of the model leads to a degradation of the transient performance of the
closed-loop system. This question has high relevance since high resolution models
are utilised for three reasons:

Scenario 1. To guarantee a small asymptotic L® tracking error: increasing
the model resolution decreases the approximation error, and thus permits greater
asymptotic tracking accuracy.

Scenario 2. Due to the conservatism of the approximation theoretic bounds
which relate approximator resolution to smoothness: when the bounds are con-
servative, overly high approximator resolutions are utilised to guarantee the re-
quired approximation error tolerance.

Scenario 3. Due to the fact that the smoothness of the nonlinearities is hard to
estimate in applications: a priori it is difficult to estimate the smoothness of the
nonlinearities of a system in the form required for the approximation theoretic
bounds.

Hence, it is desirable that scaling the model by increasing the resolution (typically
by increasing the dimensionality of the parameter space) does not detrimentally
affect the transient performance.

To examine this question we formulate a non-singular linear-quadratic (LQ)
type cost, and examine the behaviour of this cost as the resolution of the function
approximator is increased. It is important to observe that we are penalising both
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the state and the control effort in this cost as due to the presence of high gain so-
lutions, the question considered would be ill-posed for singular costs with no pen-
alty on the control. We then require techniques to compute both lower and upper
bounds on such costs. A technique for estimating an upper bound was developed
in previous work of the authors [FSR2], whilst a technical innovation of this arti-
cle is a method for estimating lower bounds.

Within the LQ framework we then compare the performances of two
classes of function approximator-based controllers as their respective resolutions
are increased. We find that two competing designs, one with a mono-resolution
and one with a multi-resolution function approximator, have substantially differ-
ent behaviour. A situation is identified where the cost of increasing the resolution
of mono-resolution design increases unboundedly (at the same time we prove that
the design yields a stable closed loop so the cost increase cannot be attributed to
losing stability); whilst in contrast the cost of increasing the resolution of a multi-
resolution function approximator is uniformly bounded.

A statement of greater precision is as follows. We consider systems X (%),
where the system’s initial condition y lies inside a bounded set %, and where the
system’s nonlinearity f satisfies a matching condition and lies inside the bounded
set A. The uncertainty A is constrained by both spatial L> and L* norm bounds.
Given a bounded set of reference trajectories %, the worst case asymptotic
tracking requirement is specified by an error set Q. The adaptive controllers
E(D", o™, Q') (#er) considered in this paper are Lyapunov-based designs depen-
dent on both a function approximator ®”', where m indexes the parameter dimen-
sion, and on a tunable parameter «” (an adaption gain). We measure performance
of a closed loop (ZA(%p), E(D", o™, Q")) (%rer) by a modified worst case LQ cost
functional which is denoted by

P = P(ZA(Y), (D", 0, Q0" ) (Wrer) ). (1)

The essence of the modifications to the LQ cost functional is that the cost is not
measured inside the error-set Qf'. The cost is worst case with respect to the initial
conditions, reference trajectory and system, and is best case with respect to the
adaption gain (i.e. we are considering the optimally tuned controller).

In Section 3 we establish a negative result: demonstrating that scaling can be a
real issue for these function approximator designs. The class of uncertain systems
YA(%,) considered are MIMO systems of order one. The class of models consid-
ered are characterised by uniformly localised basis functions: this class includes B-
spline networks ®”" defined on uniform knot lattices. Such networks are utilised in
many applications of approximate adaptive designs [JVL], [OZSP].* For this class
we show that the designs do not scale when considering Scenario 1 above. In
particular, we show that if we satisfy a demand for higher asymptotic tracking
accuracy (i.e. Qf — {0} as m — o) by increasing the resolution of the approxi-
mator, then the performance diverges although, e.g. stability is still maintained.

! The class also includes the Gaussian Radial Basis function (RBF) networks of [SS], subject to an
unresolved conjecture (see Conjecture 3.7 below).



148 M. French, Cs. Szepesvari, and E. Rogers

Specifically we show that there is a choice of adaptive gains {a"},,~1 such that
for all sufficiently large m, 2,, < co, but for any choice of {a"},,> it follows that

limsup £, = . (2)

m— o0

The poor scaling of performance is solely due to the control design, since
under perfect knowledge a feedback linearisation strategy has the property that
limsup,,_,,, Zn < .

More general control designs for output feedback and strict feedback systems
based on backstepping collapse to the controllers we are considering when applied
to these first-order systems. Therefore we can conclude that this undesirable per-
formance divergence is a feature of all these adaptive designs when coupled with
certain function approximators. We have therefore raised serious questions about
the applicability of many designs (and their generalisations) which are popular in
the connectionist communities.

In Section 4 we show that this degradation of performance can be avoided
in Scenarios 1-3 considered above. The class of systems X5 (%) considered is a
MIMO chain of integrators. This is not as general a class as one would ideally like,
but we take this as the first step in comparing the performance of adaptive con-
trol designs: given that this class of systems includes the class of first-order MIMO
systems considered earlier, we are able to conclude that for a nontrivial class of
systems these two designs differ substantially (in Scenario 1). Furthermore, exten-
sions of these positive results have also been made to classes of backstepping con-
trollers [FS].

Specifically, we give a general construction for controllers Z(®™, o™, Q') based
on a wide class of function approximators ®"” which have the property that there
is a choice of {a™},,> such that

limsup £, < 0. (3)

m— o0

The results hold in both the cases of Qf — {0} (Scenario 1) and that of a con-
stant Q' = Q( (Scenarios 2 and 3). Results are given in both a semi-global set-
ting with finite-dimensional models (in which case the uncertainty level is required
knowledge) and in a global setting where the uncertainty level is not required
to be known a priori, but the function approximator is of countable dimension.
However, by restricting these infinite-dimensional approximator structures to be
semi-globally finite-dimensional (SFD), the global controllers can be realised as
finite-dimensional controllers since only a finite number of adaptive estimates are
updated (the number of updates is dependent on the uncertainty level), see, e.g.
[FSR2].

The essential restriction we impose on the approximator class is that higher
resolution models are generated by extending the basis function set. Thus func-
tion approximators based on series expansions such as polynomial bases, Fourier
series, wavelets, etc., are valid; and in a simple manner it is possible to take models
of any functional form, and by generating a controller based on the union of all
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the models below a particular resolution, also achieve uniformly bounded closed-
loop performance.

Whilst we are predominantly concerned with a question which is only ap-
plicable to function approximator-based designs, the techniques developed in this
paper should be of wider interest: we have to compute both upper and lower
bounds on an integral performance measure, techniques for which must be devel-
oped if any analytical comparison is to be made between, e.g. robust and adaptive
controllers. The upper bound theory extends that of [FSR2], where the resolution
scaling issue was first raised, whilst the lower bound estimates are completely
new.

2. Problem Formulation

2.1. Notation

We denote by | - | the 2-norm of vectors and all norms over vector-valued
functions will be defined by this norm. For example, for /'€ C(Q,R"), || f|lc@ r)
is defined by ||/]lcia ) = |L/]]1- (@ k) = SUp, collf (x) 2. The matrix norm [ix] o
for a positive definite, symmetric matrix Q and vector x is defined by ||x||§Z =
xTQx. An inner product for an inner product space # is denoted by <-,->,.
For a function space # with domain X and range Y we write # (X, Y),if Y =R
we write Z (X). The order notation is defined by f(x) = O(x) if and only if
lim supy |/ (%)|/[|x]| < oo. Hence the statement f(x) > O(x) means 3g such
that f(x) > g(x) and g(x) = O(x), similarly for f(x) < O(x).

For a set Q c R", we let Q° denote the interior, dist(x, Q) =inf,cq|lx — ¥l
and diam(Q) = sup{|x — y|: x, y € Q}. Elements of Euclidean spaces #" = R” are
thought of as column vectors. We occasionally let 1 denote the vector
(1,1,...,1)". Z(R), A(R) denote the maximum and minimum eigenvalues of a
matrix R. We define R, = {r € R: ¢ > 0}. A closed-loop system is said to be well-
posed if all solutions of the system are defined on IR, and all closed-loop signals
are bounded. The support of a function f" is denoted by supp(f).

2.2. Control Task Formulation
2.2.1. System Specification

We consider systems which are the union of p integrator chains each con-
trolled by a single input. The order of integration for the jth integrator (1 < j < p)

will be n; (1 <n;) and its state will be denoted by ¥; = (y;,3",..., " ")"
IR". The control will be denoted u = (uy,..., u,,)T € R?. The nonlinearities are
matched, and hence lie in the span of the control. The nonlinearity for the jth

system will be denoted by f;: R” — R. These are functions of the full state ¥ =
(Y,..., Y,,)T eR", n= Zf:] n;, of the system, and f: IR" — R” is defined by

) = (V) (V)T

€
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We formalise this as follows: Let 4; € R"*", B; € R%*! 1 < j < p, be defined:

o100 --- 0 0

oo01 --- 0 0
=0 i B= (4)

0 0 0 1 0

000 --- 0 1

We consider systems of the form:

2p(Y0): Yy =AY+ Bi(fi(Y1,..., Y,) +u), l<j<p, Y0)=Yy (5
Typically we are concerned with situations where f: IR" — IR? is unknown and
lies within the set A:

fF=Uf, - f) €A x-—xA, =A (6)
We define an uncertain system as
Ea(Yo) = {2/ (Yo) [ f € A}. (7)

Throughout this paper we are concerned with uncertainty sets A with the follow-
ing property:
Aj = Ky A(Aj;02) 0 A(Fj0x)), 1< j<p, (8)
where
A(AG;05) = {fj € A [ fill < 02}, )

A(F5:05)) = {1 € Zi | 1fill 5 < s} (10)

Here #; is the space L*(Q) or the weighted space L*(Q;wy), and Z; is the
space L*(Q) or the weighted space L™ (Q;w,;),> where Q < IR". Q will gener-
ally be compact in the unweighted cases, and global in the weighted case. K =
Ki x - x K, c C(Q,IR”) is an approximation theoretic smoothness class, which
we will discuss subsequently. The motivation for modelling the uncertainty in both
an L?> and an L® sense is discussed in [FSR2], but broadly speaking the L? bound
suffices to give stability conditions and characterise the state performance, whereas
it is necessary to have (pointwise) L* information to bound to the control effort.

As initially our approximation domains Q will be compact, we first consider
semi-global results, and so define an initial condition set as

Yo = {Yo e R*[[[ Yol <o}, (11)
and let Z5(%)) = {Za(Y0) | Yo € #}. Given a reference trajectory, yrr: R, — R%,
Vref € C" (R4, R) x C™ (R4, R) x - x C" (R, R), (12)
we denote
1 nj—1 .
yrel = (yref/,yﬁegj, e ,yg’fj N 1<j<p, Yo = (1, ) (13)

? The weighted spaces L*(€; w2), L*(€;w., ) are defined by the inner product {f,g> = || fgw2l|7: o,
and norm || /|| = [[f(-)Wee (|| - I)l= (@), respectively. We assume throughout that we: R, — R, is
monotonically decreasing and that the weights w, lie in L.
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(ie. Y™ RZ — R"), and define a reference trajectory set as

Yrer = {yref eCn (IR+aIR) XX C””(]RJH]R), | ||Yr6f||L‘7“(]R+) =7
max 1) < . (14)

where y;, 7, > 0 are fixed numbers, known to the control designer. It is also con-
venient to define
={zeR"|[z| <n} <=L, (15)

o (14) implies that for any reference signal yr € ¥er, Y™ () € Q, for all £ > 0.

2.2.2. Stability and Performance: Definitions

Let Qo < R” be an a priori specified neighbourhood of the origin. The control
task is to give a controller E( y.r) which drives the worst case tracking error x =

(x1,... ,xp)T to Qg as t — oo, where x is defined by
5()=Y() = ¥(),  1<j<p, (16)
i.e. we want
sup sup  sup sup lim dist{x(7),Q} = 0.>* (17)

feA Yoety yur €W solns(Z,(Yo), E(yeer)) %

Whilst demanding a good asymptotic worst case tracking error, the con-
trol designs will be judged by their transient performance. So let Q; € R"*" be
a symmetric, positive definite matrix and let r; >0 for 1 < j <p. We let Qe
R" x R", R e R” x IR be the block diagonal matrices Q = diag(Qi,...,0,), R
diag(ri,...,r,). Transient performance is then measured by the following worst
case LQ cost:

2(0, R, Q0, Q)
= Psa(@0), 2)) (@ R, R0, Q)
=sup sup sup sup <J xTOx dZ+J u” Ru dl), (18)
FEN YWy Yret € Urer solns(Ey(Yo),E(yrer)) \J T, To,
where Tq,, i = 0,1, is defined:
To, = {t=0|x(t) = Y (1) = Y™(1) ¢ Q;}, i=0,1, (19)

for suitable neighbourhoods Qg, Q) of 0 € R". Here x(¢) and u(¢) denote the track-
ing error and control signals for the (well-posed) system (Z/(Y0), E(Vrer))-
We motivate this cost as follows. It is reasonable to penalise the state error only

3 For notational simplicity, both here and in what follows, we do not index closed-loop signals x, u,
etc., by the closed loop to which they belong: e.g. for x, one should always read Xz, (yy).=(y,.))> €tC-

4 The inner supremum is taken over all solutions of the closed loop: it is required as in general the
uniqueness of solutions cannot be established, e.g. for controllers with a dead-zone modification [PI].
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when it lies above the desired accuracy. It is also reasonable to penalise the con-
trol cost with respect to the same threshold, i.e. to take Q; = Q,. However, we
are interested in the behaviour as Qy — {0}. Note that if the nonlinearity of sys-
tem (5) is known (e.g. A = {f°}), then even the feedback linearisation strategy,

w=—f —a'x —i—ygggj, I<j<p (20)

(see Section 2.4 for the definition of a;), yields
g(Q,R,QQ,QQ) — O (21)

as Qp — {0} for %, # {0}. However, for the feedback linearisation strategy we
can also establish:

y(Qa()aQOaQO) < W(Q,O,Q,Q) < 0, VQO < ]Rna (22)

so it follows that the divergent behaviour in (21) is solely due to the control
effort term. There are many different ways of modifying the cost to prevent this
divergence whilst still penalising the control effort. Here we elect to consider cost
functionals of the form 2(Q, R,Q,Q;). This is a reasonable basis to judge the
behaviour of adaptive designs as Qy — {0} (for a fixed Q;), as the perfect feed-
back linearisation strategy gives uniformly bounded behaviour:

2(0,R,Q0,Q1) < 2(0, R, {0},Q) < 0,  V¥Qy < R". (23)

2.3. Approximation Theory and Notation

To define the control design and to formulate the problem investigated in this
paper precisely, we first introduce the notion of a smoothness class and that of a
linearly parameterised approximate model class.

For Q = R", a smoothness class is a dense nested set of subsets {Kz}s>o of
C(Q) (i.e. K <= Kp, = C(Q) for all f; < p,). Typically a smoothness class is
specified by Lipschitz constraints, or by bounds in Sobolev spaces as is typical
in approximation theory. A model class is a sequence of model bases {¢"'},>1,>
¢": Q — W, where #,, is a Euclidean space called the weight space of the mth
model. Typically dim #,,, the dimension of ¢™, will be a divergent function of m.

Generic approximation theory furnishes us with a partially defined function
p: R, x R, — N, called the dimension function that satisfies

sup inf || f = 07¢"P)| ) <, (24)
fEK/f e 1///,(/;)5)

for any smoothness parameter § and approximation error bound ¢ in the domain
of p. If domp = R, x R, then the model class is said to be a {Kz}s>0 approxi-
mate model class. For the case of compact Q, there are many different con-
structions of approximate model classes with finite-dimensional bases. As an

5 We use superscripts to denote both powers and index quantities, the usage is determined by context.
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example, if ¢ is the polynomial basis ¢” = [1,x,x2,...,x™"], Q = [a,b] and Kj is
the Lipschitz-class,

Ky ={f € Cla,b]||f(x) = f)| < Blx =y, Vx,y € [a,b]}, (25)

then Jackson’s theorem [R] gives the dimension function p(f,¢) = (b — a)/3e.
For non-compact €, given appropriate regularity, approximate model classes can
also be constructed with bases of countable dimension. In the final section in this
paper we consider such a model class.

In this paper we are concerned with the approximation of functions in
C(R",IR?), i.e. vector-valued multivariate approximation. For simplicity, we re-
strict the exposition here to componentwise approximation of these vector-valued
functions where the functions corresponding to the individual vector components
are approximated independently of each other with a separate set of (multi-
variable) function approximators. The corresponding model will be denoted by
Q" R" — Wy X - X Wiy, Where @™ = ( ’1”,...,¢;’)T, ¢;": R" — W}, where
for notational simplicity, we further assume m; = m for 1 < j < p and take the
same model basis for each component (/5;” = ¢ for 1 < j, k < p. Similarly, we
consider the multi-output smoothness class {Kz}z>0, Kz = C(Q,IR?) as defined
by

Kp=Kpx Kgx - x Kz = (Kp)” (26)

for some smoothness class {Kj}s>0, Ky = C(Q).

2.4. Controller Design

The class of controllers considered in this paper are adaptive controllers derived
from a simple Lyapunov analysis; as such the designs are well known in the lit-
erature, see, e.g. [SS], [KKK], etc. It is important to observe that more complex
backstepping designs such as those for the output feedback form and the strict
feedback form reduce to the controllers we are considering when applied to MIMO
systems of relative degree one, see e.g. [F|, [FR] and [FSR1] for dead-zone modi-
fied backstepping designs.
The control is taken to be

u = _6/T¢j(Y) - a./ij + Vrer®s I<j<p (27)

J

where g; € R" is chosen such that the matrices
Ay =4 — BjajT, 1<j<p, (28)

are Hurwitz. The dynamics of the estimator éj € Wy, 1s then given by an adaptive
law of the form:

0y = o4 xTHD(Qy, )T (Y),  6(0)=0eW;, 1<j<p  (29)

where T; € RY™ 7™ % s 5 positive definite matrix, called the adaptive struc-
ture matrix, b; € R%™ "% ! is a weighting vector (to be defined below), 0 < %; € R
is the adaption gain and D(Q,-) is the dead-zone function, defined to be the
characteristic function of R"\Qy. We further assume that ¢; € #;, and is
locally Lipschitz continuous. We define I' = diag(I'y,...,T,), b= (by,... ,bp)T
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and o = (oq,...,ocp)T. Throughout this paper let P; be the solution to the
Lyapunov equation
AP+ PAy=-0;,  1<j<p,

where recall that Q; = Q" > 0. Define

P =diag{Py,...,P,}, (30)
and let
bi=(P +P)B, 1<j<p.

Equations (27) and (29) then define the controller
E(J’ref) = E(r>0‘,q)790)(J/ref>7 (31)
and together with (5) yield the following closed-loop system (X/(Yy), Z( yrer)):
X = Ayx; + Bi((0;— 6) " ¢(Y) + dy(Y)), 1<j<p,
x(0) = Y(0) — Y™ (0), (32)
0 = oy x/b;D(Qo, )T (Y), 1<j<p,  6,0)=0,
where dj(Y) = f;(Y) — 0/ ¢;(Y), and 6 is such that
ldy(Vley <2 jnf 11— 97¢llciar- (33)

Welet 0 = (01,...,0,)" and dy = (dyy, ..., dy,)"
Throughout the paper we take Q, Q; to be of the form

Qo= {xeR"|xTPx <5},
Q = {xeR"|x"Px <n}}, (34)

for some 7,,#; = 0. We define the »#; Gram matrix G; of the model component
¢;: R" — W, by

G =A{giiciksamny,  9h = <(0)i () (35)
2.5. Basic Stability Result

We now give the basic stability/performance result concerning such controllers.

Theorem 2.1. Let Q <= IR" be a closed set. Consider the system Zx(%,) with func-
tional uncertainty:

A = A(L*(Q;w)),02)) O A(L™ (Q3 Waey), 020), 1<j<p, (36)

© The factor of 2 in (33) is purely for mathematical convenience, if best approximations exist, then
the factor could be removed, and, in general, the factor could be taken to be any number strictly larger
than 1.
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where wj, 62 and w,; are known and the cost function 25, (),
is defined by (18). Let

Yyet)) (Q?R 90791)
E() = E(F>“>(D7QO)(')’ (37)
and define

B P 1 (62 + supy A||df-||L2(Qi"/))2
W&:max{i(P)(VoJFVl)z:’?g}JrZth. THHC .
=17

MI)A(Gy) ’

(38)

where Gj is the L*(Q; wy;) Gram matrix of the model component ¢;, and y,, 7y, define
the constraints on ¥y and %, respectively (see (11) and (14)). Further, P is defined
by (30). If

1. n, satisfies the inequality:

2||b]|
> sup ||dr ry, 39
Mo &(Q) jeIA) || f”C(Q,]R ) ( )

2. OEQ()CQ] CQ,
3. the adaption gain o. > 0 is such that

{ze]R”|zTPz£ <\/W“+ \/)j“(?)h)z} cQ°, (40)

then:

1. (ZA(%0),E(Wrer)) is well-posed; for any reference signal yier € Yrer, x(1) — Qg
as t — oo, where x(t) is defined by (16). Also, Y (t) € Q for all t > 0,
2.

Q(EA(WJ(J = (WYref)) (Q’R QOaQI) (41)

Proof. This result is obtained by a Lyapunov analysis, and is a simple extension
of the stabilisation results of [F] and [FSR2]; hence we only sketch the proof. In
particular, the well-posedness of the system is not dealt with here.

Let yur € %er, f €A, yoe®y, and initially suppose xo ¢ Q(. Consider
(Z/(»0), E(yrer)) and define V: R" x #™ x --- x #™" — R by

V(x,0) = xTPx + ZP: fo (0; — 6,) 7T (0; — 6)), (42)

where 0; is defined by (33). Let ¥, = V(x(¢),0(r)), and Tq,, i =0, 1, be defined
by (19). Some straightforward inequalities establish that Vo, < W,. If Y € Q and
x ¢ Qg, then )

Vi=—x"0x+ x"bd(Y) < —(4(Q) — 9)lIx|I%, (43)

where g = ||b]|||ds|| (@, rry/diam(Qy). Since by assumption g < A(Q)/2, it follows
that the right-hand side of (43) is negative. Hence by condition (40), and a level set
argument, we can see that the 7} level set of V' is invariant, hence the closed-loop
signals are bounded: in particular Y (¢) is bounded by Q. By definition of the dead-
zone, we can establish that 7 is decreasing on T, and hence by inequality (43)
that x(¢#) — Q. The boundedness of the performance follows from the continuity
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of x, u, the fact that x(7),u(¢) can be bounded in terms of V; (and hence uniformly
by W,), the measurability of T, and Tq, and the fact that

Vo —infieq, Vi

m(TQ)SWl(TQ)S - ;
' 0 1nf,eTQO|V(t)|

(44)
The case xoeQy follows similarly by showing V- < W, where *=
inf{z > 0] x(r) ¢ Qo}. [ ]

The above theorem is given weight by the fact that by taking Q to be compact,
there are a wide variety of finite-dimensional models satisfying the conditions of
the theorem. Any {Kz}s>0 approximate model satisfies inequality (39) as m — oo,
and by choosing «, condition (40) can be satisfied, provided

de>0 such that

{z eR"|zTPz < (max{\/ﬁ(yo + 71)’770} + \/M;q)z + a} = Q. (43)

However, it is important to observe that a large o. > 0 could lead to excessive con-
trol effort. Note that condition (40) restricts the L uncertainty level for a bounded
Q; condition (40) is a sufficient condition to ensure the state remains in the region
where the approximation accuracy is small and clearly a greater uncertainty level
will generally lead to a worse output transient for a fixed « > 0. Violation of con-
dition (40) can easily lead to complete instability: see [FSR2] for an example.

Note further that this theorem is completely constructive, all the required gains
can be computed from the conditions. Explicit bounds for 2(Q, R, Q, Q) for the
case of stabilisation can be found in [FSR2], these can easily be generalised to the
situation considered here.

2.6. Formulation of the Main Results

The problem we now consider is as follows: given a fixed uncertainty A, does
the performance degrade as the dimensionality of the model increases? In a trivial
manner performance can diverge if increasing the dimension of the model causes
a loss of stability in the system, by violating condition (40). However, as noted
above, if condition (45) is satisfied, then stability can always be maintained by
choosing the adaption gain appropriately, so the question we address is whether
the performance degrades irrespective of the choice of gains.

Section 3 shows that the performance degrades as the resolution of standard
model-based controllers increases. We consider Scenario 1 where we are interested
in decreasing the asymptotic L™ error ¢ by increasing the model resolution (m). In-
creasing the model’s resolution reduces the approximation error, and permits a
smaller dead-zone ('), hence leading to improved asymptotic L* tracking. Spe-
cifically we construct:

1. a class of models @™ with localised basis functions,

2. a corresponding set of decreasing L™ tracking requirements specified by the
sets {Q¢' }m=1 (Qf — {0} as m — o0),

3. a nontrivial choice of A, % ¢ satisfying the constraints listed in Section 2.2,
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for which the associated controller given by
Em() = E(, ", 0", QF)() (46)

has the properties that there exists M > 1 and a positive sequence {a"},,> such
that
Pisa ), Zn@e) (Os RQY, Q1) < 0, Ym>M, (47)

but for all positive sequences {¢"},,> the performance diverges as m — co:

lim sup ﬂ(ZA(@O) (Q,R le,Ql) = 0. (48)

m— o0

1'—‘111 1ef

In Section 4 we give a general construction for a model class whose associated
controller performance is uniformly bounded as the model resolution increases, i.e.
we construct a class of models {®"'},,>| where the associated controller

En() = E(T", ", &, QF)() (49)
is such that
lim sup jEA(ﬂo En(Wrer)) (Q7 981791) < 0. (50)
mM— o0
Thus whilst there may be a price associated with increasing the resolution of
the model; the worst scenario of divergence can be avoided. In this case Q can
either be fixed independent of m, e.g. Q' = Qy, or can, e.g. have the property that
Qy — {0} as m — co. In the former case the interest in the asymptotic result arises
from quantifying whether an overly large model may degrade the performance. As
observed previously, overly large models are often utilized as in Scenario 2 or 3 of
the Introduction (i.e. due to conservatism in the dimension function p or due to the
inherent difficulties of determining /). In the latter case we consider Scenario 1,
where the resolution is increased to improve the asymptotic tracking accuracy.

3. Divergent Performance of Mono-Resolution Models

In this section we develop a class of examples which have divergent closed-loop
performance as the model dimension is increased, irrespective of the choice of the
adaptive gain.

3.1. Model Structure

We first construct a multivariate model on the domain

O = [—n.n)" x-x[=n,n]". (51)
We assume the following properties on the model structure:

1. (Basis function). Let F: R — IR be such that F is continuous, F has a maxi-
mum at 0, F(0) > 0, and F(x) >0, Vx € R.
2. (Tensor product). Define s™: R — R*™! by s = (p™ o™ . ... 0" | oM
for m > 1 where
o' (x) = F(mx — ni), -m<i<m. (52)
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We define a multlvariate model ®": R" — (]R(z’"“) ), " = (47" ,...,¢p )T,
¢ R" — R™D" 1 < j < p, by the tensor product construction:

¢ (x) = 4" (1, x) = 5"(x1) @ 5" (x2) ® - ®@5™(x)  (53)
(note that ¢;" = ¢" for 1 < j, k < p), so that for some suitable bijection
e{L2,...,Cm+ )"} = {-m,—m+1,...,m}" (54)

we can write

(¢"1)k(xl, ey Xp) = (P?Zk) (M)(/)SZ k), (x2) - "(Png) (Xn)- (55)

The corresponding weights are denoted by 6’" €Wp = =R D" We let
& N — N” denote the map &(k) = (i1, ..., in)-

3. (Linear Independence). The functions {( Pila,: Q2 — R} _y<p<m are lin-
early independent for all 1 < j < p (recall that Q, is specified by (15)).

4. (Uniform strength). There exist constants Y, Y, such that for all m > 1,

0<Y < in£ |IT¢/'”( )< sup |1T¢'"( ) < Yo, I1<j<p (56)
X€i ’ xeQ,

Note that condition 4 implies an exponential spatial decay rate for the function F.

3.1.1. Examples: B-Spline and Gaussian RBF Networks

Many common models utilised in approximate adaptive designs satisfy the above
assumptions. In particular consider the Gaussian radial basis function networks
defined on the regular grid:

Zi(m) ={-n,....—n+kn/m,....n—n/mn}", (57)
L(m) = L1(m) x Lr(m) x -+ x Lp(m) (58)
and obtained by taking
F(x) = exp(—px?), (59)
and then following the tensor-product construction of the previous section (see

conditions 1 and 2). This yields the familiar basis functions with the scaling of,
e.g. [SS]:

o3 = exp-mpllv - L] ). (60)

Here &(k) € {—m,—m + 1,...,m}" is viewed as an element of N”.

Condition 3 follows from the linear independence of {(gbjm )it R" = R} ck<m
and the analyticity of the Gaussian function. Condition 4 follows from the in-
equalities

0 < exp(—npy) < [17¢7"(x)] < [17¢]"(0)| < 1+ exp(—pn%?),  VxeR",
j=1
(61)
since the right-hand side of the final inequality clearly does not depend on m and
is easily shown to be convergent by, e.g. the ratio test. Thus the standard lattice-
based Gaussian RBFs satisfy conditions 1-4.
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For the kth-order B-spline networks we take F to be the k-fold convolution
of the characteristic function on [—1 1] with itself. The multivariate tensor prod-
uct B-splines are then given by following the tensor-product construction of con-
ditions 1 and 2 of the previous section. The linear independence of the B-spline
basis functions over their domain of definition is a standard fact, hence condition
3 follows if Q, = ©O. Condition 4 follows from the fact that B-splines form a par-
tition of unity.

3.2. System Structure

We take p > 2, n; = 1 for 1 < j < p. The initial condition set, %, and reference
signal set, %, are defined by 7, 7;,7, > 0. Let {&,,}.m>1 be a sequence of approxi-
mation error bounds where ¢,, >0, Vi > 1, and where ¢,, monotonically decreases
to zero. The trick is to define the smoothness class { Kz} 40 so that the ¢, is an ap-
proximation error bound for the model ¢;", 1 < j < p. In particular, we define the
smoothness class {Kz} g0 as follows:
Kﬁ:Kéx xK/’;7
where

Kj=(,aplf €CQ)|supp / =0, [ =0"¢" +d, 0 €Wy, ||d|lc) < em}-
(62)
The uncertainty set is taken to be
Aj = Kjn A(LX(Q);05) N A(L™(Q);05)), 02,00, >0, >0, 1<j<p,
(63)
where Q = R”. This is equivalent to the knowledge of a dimension function p

with the property that
p(B,em) = dim #,,, Vm > 1. (64)

If span ®” < span ®"*! (such as with B-splines defined on refined lattices) it is
straightforward to observe that the smoothness class Kz is non-trivial for any se-
quence {&,},>1 and span ®" < Kj. On the other hand, if span ®” ¢ span ®"!
as for the Gaussian RBF model, then the rate of decay is critical in establishing
that span ®” < Kj. For the remainder of this section we assume that span ®” <
Kpg for allm > 1.

We have introduced a requirement that the supports of the nonlinearities are
contained in O. This is simply for convenience, so that the stability at large can be
established independently of the choice of «. In particular it allows us to take
Q, = U (hence that condition 3 can be verified for, e.g. the compactly supported
B-spline basis), without introducing instability (due to the violation of condition
(40)).

3.3. Controller and Cost Functional

The performance is measured by the cost functional Z2(Q, R, Qy', Q). Q is defined
by #, (see (34)) and is fixed independently of m, whereas Q' is defined by #":

m _ 2[b]lem
" N0

(65)
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where ¢, is as in Section 3.2. Given a model structure {®"},,~; as defined in
Section 3.1, the controllers {E,,(-)}»>1 are defined by

En() =E,a", 0" Q) (). (66)

3.4. A Theorem Proving the Lack of Scalability

We now demonstrate that the class of examples defined above suffer from diver-
gent closed-loop behaviour as m — oo. By applying Theorem 2.1 to the closed
loop (2a(%0), Em(Prer)) defined by Sections 3.2 and 3.3, we can show that there
exists a positive sequence {o”},,>1 such that

‘?(Q7R7981>Ql) < 0, Vm Zﬂ (67>

Therefore there is a choice of adaption gain which gives a finite performance at
each model resolution; we now establish that there can be no uniform bound.
Firstly we give a lower bound for the control cost:

Proposition 3.1. Consider the closed-loop system (Zx(%o),Em(%er)) defined by
Sections 3.2 and 3.3. Then

o
P sa (@), Em(#)) (0, R, QG Q1) = 0(\/?) 1<j<p. (68)
Proof. See the Appendix. |

The important feature of this bound is that if we can force o to have greater
than linear growth in m, then the control effort diverges. Therefore we next address
the scaling of the state performance. In the following results we are able to com-
pute the state cost accurately, and show that " must be selected to have greater
than linear growth to stop the state performance from diverging. This essentially
shows that divergence of the full cost is inevitable irrespective of the choice of o".

To compute the state performance accurately we exploit the fact that persis-
tently exciting reference signals can cause parameter convergence. An extension of
a well-known calculation [KKK] then computes the state performance accurately
(see the proof of Theorem 3.6). Recall the following definition and theorem:

Definition 3.2. A function & IR, — R” is said to be (t,w;,wy) persistently
exciting if there exists 7" > 0 such that for all 1 > T and for all ¢ € R,

wale* = JHT(CTQ”(I))Z di = wi ] (69)

t
Theorem 3.3. Consider the (unperturbed) system:

X = Agx; + Bi((0;, — 6,) g, (Y™)),  1<j<p, )
éj = (Xj Xijj¢j(Yref)7 1 < ] Sp

If ¢,( Y™h) is persistently exciting, then (x;(1), (0; — é])(t)) is globally exponentially
stable.
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Proof. This is the standard result on the exponential stability of systems with
persistently excited regressors, see, e.g. Theorem 2.6.5 of [SB]. ]

To be able to establish parameter convergence for our controllers, we need a
similar result in the presence of a small dead-zone. The following result establishes
the practical convergence of the parameter estimators for sufficiently small dead-
zones.

Proposition 3.4. Let m > 1, o >0, x> 0, p,, > 0 be arbitrary. Let (Y™, ™)
(1 < j < p) denote the solution of the closed-loop system (Eym,Z,,(Y ")), where
fm=" . ,fj;"’)T, 5= (ij'l)Tgbjf", 0" = 1. Assume further that the reference
signal Y™ is such that ;/5]’-”(Y,fff) is persistently exciting. Then there exists &, > 0
such that if n’ < &, then

limsup |0/"(1) = 0" < p,,  1<j<p, Ym=p (71)

1— o0

Proof. See the Appendix. |

The critical step is to establish the existence of a persistently exciting reference
signal Y™ e @,r. The proof of the following result constructs (for fixed m) a sig-
nal yrer € #rer which guarantees that the regressors ¢/"(Y), 1 < j < p, are persis-
tently exciting. The construction is an extension of the ideas in [KNW].

Proposition 3.5. Let m > . Then there exists a reference trajectory anff € Wrer
and &, > 0 such that if Y: R, — R" is continuous and

limsup || Y (£) — Y/ (0)|| < &m,
—o0
then ¢" (Y (-)) is persistently exciting for 1 < j <p.
Proof. See the Appendix. |

We now give the main result of this section of the paper.

Theorem 3.6. There exists a sequence {e,}m>1 defining both the smoothness class
Ky and the dead-zone by (62) and (65), respectively, such that if

span ®" < Kp, Vm > f, (72)

and A, E™ are defined by
Aj = Ky 0 AL (Q);05) N AL*(Q);0),  1<j<p, (73)
Em() = E(, o™, 0", Qg') ("), (74)

then

1. there exists a positive sequence {0} ,,>1 such that

b W(ZA(W(J>vEnx(2//1‘ef)>(Q7 R7Q’617QI) < OO’ Vm Z ﬁ’ (75)
ut,
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2. for all sequences {a™} 51,

Q(ZA(JJU )s Eim(Yret) (Q7 1981791) Zo(m(piwﬁ)' (76)

Proof. Define the sequence {¢,,}m>1 by

Em = min <;|(|§)| Em,s 8m> (77)

where &,, and &,, are defined by Propositions 3.5 and 3.4, respectively.

Inequality (75) follows from Theorem 2.1. To establish inequality (76) we
first consider the state performance. We apply the construction of Proposition
3.4 together with Proposition 3.5. For each m > 1 let f;"" = K1T¢’” where 1 > 0
is chosen such that /" € A (e.g. one may choose x = 1/Y, min(d,,,d2/m(Q))).
Let Yref be the reference signal whose existence is proved in Proposition 3.5 and
let (Y 0) be the solution of the closed-loop system (Efm (Yo)» Em(Vrer)). Then
limsup,_ || Y (1) — Y(2)|| < " < &» and thus ¢;"(Y (1)) is persistently exciting,
by Proposition 3.5.

Therefore taking p,, = p > 0 and applying Proposition 3.4, we have

J xTQxdz:J —Vdt
TQ[’)’I Tﬂgl

= V(0) — limsup V(¢

— o0

b m '
= %o Pxo - H(g zsfpzz o [0 =»)

= 0| m? Am
j=1 2“]‘

0<m—p>, 1<j<p (78)

m
o

However, by Proposition 3.1,

o
9’(Q7R,Q’0”791)20< ’>, 1<j<p. (79)
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Combining this with (78) we have

m OC/m m?
‘@(Q’R7QO7QI)ZO max -_’7

as required. |

We have therefore established that a wide class of models lead to divergent
closed-loop performance when the resolution of the approximator is increased.

It is fair to criticise the construction due to the excessively fast rate of conver-
gence required for ¢, and hence the required rate of shrinking of the dead-zone.
Indeed, it can be argued that unless 7’ and hence ¢, can taken to have a poly-
nomial decay, then the smoothness class is not prototypical of standard smooth-
ness classes widely considered in the approximation literature, where we can expect
the approximation errors &,, to be of the order of (1 /mf’)ﬁ , where § > 0 is the mea-
sure of the smoothness. For example, if the decay is superpolynomial, then the
Gaussian RBF considered previously yields the smoothness class Ké = {0} which
clearly does not satisfy the requirement that span ®" < Kp, Vm > . We formalise
this as a conjecture:

Conjecture 3.7. The decay rate of ¢ in the definition of the smoothness class K in
Theorem 3.6 can be taken to be polynomial.

We consider the resolution of this conjecture to be an important open issue in this
field.

Of course, as observed above, model classes such as the B-splines satisfy the
requirements of the theorem regardless of the decay rate, and thus we have indi-
cated that the scaling problem is a real issue in these Lyapunov-based designs.

4. A General Design for Resolution Scalability

In this section we give a general construction for resolution scalability based on
any approximate model class derived from basis extensions. Since the results will
hold for any sequence of dead-zones Qj' < Q of the form of (34), it follows that
the results are applicable in Scenarios 1-3.

Let {&)k :Q — Wi }re=1 be a sequence of models, and define

" = [®'|0%--- &), (81)

We assume that {®"'},,~1 is a {Kp}p>0 approximate model class. Note that we
are imposing a considerable structure on the model class, for example we have
ruled out the mono-resolution model class of the previous section. We are essen-
tially requiring that the higher resolution models are simply basis extensions of
the lower resolution models, hence standard approximation bases such as Taylor
series, Fourier series, wavelets, etc., are all of the appropriate form. Basis
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functions from any {Kp}s-0 approximation class can be utilized, for if {®F} o is
a {Kp}p>o approximation class, then so is {®"},, 1, but note that ®” is of much
higher dimension than ®™ as it is the union of all the lower resolution models.
The important difference between the requirement we are making in this section
and the conditions imposed in the previous section is that the models contain basis
functions corresponding to all resolutions, whereas the models of the previous sec-
tion are “mono-resolution”. For simplicity, we assume that the components of the
model are all equal, i.e. ¢;" = ¢" for 1 <i,j <p.
Firstly we treat the case of compact Q. We define

m . 2 2 2
[ = diag{®i Ldim »i xdim #i @3 Lgim w3 xdim #55 - - - » Oy dim w5, xdim w5, - (82)

"™ = diag{T7",...,T"}, (83)

4p
where {®;};> is the positive sequence defined by
T s
sup,collg'(x)]

Here {¢;}i>1 is any sequence for which >~ |¢;| < +c0. Without loss of generality
we may assume that > |¢;| = 1.

Theorem 4.1. Let Q < R” be a fixed compact set, and let {Kg}p~o be a smooth-
ness class. Suppose {®"},,>1 is a {Kg}p=o approximate model class. Consider the
system A (%) with functional uncertainty:

Ajc Kpn A(L*(Q; W2j),02;) O AL (5 Wos),00) s l<j<p, (89
where 0y, wy; and w,; are known. Let
Em(') = Em(rm7a7®’77796")(-)’ (86)
where T’ and ®" are as in (81)—(83). If

1.0eQf cQ) cQ,Vm > 1,
2. de > 0 such that

{ze]R"|zTst(max{ 2(P)(po +71),1 } \/7)/1) +8}CQ (87)

then there exists o > 0 and M > 1 such that, for allm > M,

L. (ZA(#), B (%rer)) is well-posed, x(t) — Qo ast — oo, Y(t) € Q forallt > 0,
2.
limsup 25, (),z,, @) (9, R, Q' , Q1) < 0. (88)

m— o0

Proof. Choose any M satisfying

X(0)
> p(ﬂ, "o 2||b||) (89)
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and define
7 21 0y +qm)’
W* = max{A(P + 2,2 +§ — T 90
where
= - ) < - 1
qu = max fjsgg gl 2 (@) < Sm lrgftgpIIWz,lle) < o, (91)

and sp; > 0 is such that M > p(f3, s)r). It therefore follows by condition (87) that
there exists an adaption gain o > 0 such that

{zeR"|zTPz < W + A(P)y}} = Q. (92)

Let f €A, Y™ € %, yo € %, and initially assume that x, ¢ Q. First we con-
sider well-posedness and convergence to Q. Let m > M. Let " be the Lyapunov
function of Theorem 2.1 corresponding to the mth model. Following the proof of
Theorem 2.1, it suffices to show that the level set defined by V" is contained in Q.
From (92) it suffices to show that

W' =w;, (93)

where V" is the value of V" at time zero.

Since the model ®™ for m > M is simply a basis extension of the model ®* | we
can define 0/" € #1 x --- x Wy, by 0/ = [0}” |0], where 6’}/{ is a parameter-vector
that satisfies

: A
ldM le@ = 11 — 0}) ® || ¢ < %%_ o4)

Since (0")"(T;") 707" = (") (T}) ™0}, (0/)" GM0}" < (6 + qw)*, we have

(03 +qum)’
ATMAGM)

(07" = 6/"(0) (L") ~(9]" - §/"(0)) <

J J J J (95)

and so V" < W, as required.

We now consider the state performance bound (to avoid an explosion of in-
dices, we omit the index denoting the dependency on the model-size unless the
dependency is crucial). We follow the derivation of [FSR2], which we repeat here
for completeness. By (43),

g)’d:efj

xT(6)Ox(1) dt = J —V, dt+ J xThd(x) dt. (96)

Ta, Ta, Ta,

We consider the first term of the right-hand side. Since x(¢) is continuous, we
can write To, =, E» Where Ey = (1, ,1;) are maximal disjointed connected
subsets of R, and define B, = {b € B|m(E}) > 1/n}. By the definition of the dead-

zong:

JU =V =V S (97)
beBy €Dy
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since the summation telescopes and V; > 171 for all > 0. Then applying the mono-
tone convergence theorem we obtain

J V,dtzlimj ~V,dt < Vo —ni. (98)
Ta, e UbeB,IEb
Then since
xThd(x)| < g||x||* < 9T X, 99
[x"bd(x)| < gllx| 0 0 (99)
we have
7' < V—2+J Thd(x) dt < V—2+LJ 2 di
(Vo—n7) TQOX (x) (Vo —mg) 20) ), Ixllg
< (Vo—nd) +ﬁ@’. (100)
Rearranging the terms yields
/ i(Q) 2 4(0) R
P < ——=—(Vo— < ——— (W —np), 101

so we are left with estimating the control effort integral. The idea is to change
the integration over Tg, to an integration over [?, V] as a function of ¥;. We first
establish an inequality for u]?(t), 1 < j<p,interms of V;:

W3 (1) = (~0] (¢ (Y (1)) — a5+ y) )?
swﬁrﬁwwm (0= 0)7 " (Y (0)) + ¥l )?

< (—alx; = (Y (0) + d (Y (0)) + (6, — )T " (Y (1)) + y

(Iajll

2
+¢@—@f@%l@—@mmmmwumw+n>

YTPY
||Cl]|| 30/ oc; i(P/) + Sm

2
+¢@—@V@Wl@—@ﬂwa

+(5le4/ (Y (D)) + sar

< (V (1)), (102)

where the function #; is defined by

(0) = o 0w M<Vrfj;f )+sM+»n% rr (103
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and where we have used the crucial inequality

1/2
I g ||—Zwku¢ N>l <1, (104)
k=1
which follows from the construction of I'"". The bound on the control effort term
is now obtained by the substitution v = V;, which is valid, since by inequality (43)
and the dead-zone definition, V' is decreasing on Tg,, hence

P
J u” Ru dt < J(R ZJ 2(V,) dr
T, j=1 Ty !
A(R) Xp: J i),
= A < v
i—1 LEU(TQI) %

< %zﬂjjw 72(0) db, (105)

where we have used the fundamental inequality (43). The result now follows by
observing that the case xo € Q¢ follows by shifting time so that at time ¢ =0,
X0 € 0Q. [ ]

To apply the above result, it is necessary to have a priori knowledge of the un-
certainty level d, in order to satisfy condition (87). We now relax the need for this
knowledge, by considering global results, i.e. by taking Q = R". We measure the
uncertainties in global weighted L2, L™ spaces.

As discussed in [FSR2], it is clear that in general we will require a countably
infinite-dimensional model to satisfy the approximation constraints. However, in
general infinite-dimensional models will not yield physically realisable controllers,
as we cannot update even a countable number of parameters at a time step. Thus
we restrict ourselves to a particular class of locally finite-dimensional models, the
so-called semi-global finite-dimensional (SFD) models. These are models whose
basis functions have compact support, and moreover for any compact set Q, there
are only a finite number of basis functions whose supports intersect Q [FSR2].”
Examples of such models include splines and compactly supported wavelets. Such
models yield controllers whose (finite) dimension varies according to the uncer-
tainty level, in the sense that only a finite number of adaptive estimates are non-
constant: hence the controller can be implemented.

Let {®™},,~ be a sequence of a (countably infinite) SFD model. Defining the

7 The proof of global stability given in [FSR2] is however only valid if the model basis is orthor-
normal (orthonormal SFD models exist, e.g. Daubechies wavelets [D]). Note however that the con-
struction given next also establishes the required global result for general SFD models.
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basis function extension @™ as in (81), it is clear that ®" is also an SFD model.
We assume that {®"},,~ is a {Kp}p>0 approximate model class. A suitable con-
struction of a suitable I'"” for the SFD model ®™ is as follows.

As in the previous section, for simplicity, we assume the model components are
equal, i.e. ¢/’” = ¢ =¢" for 1 <i, j <p. Then we partition the infinite-dimensional
models ¢” into a countable number of finite-dimensional parts:

§ =1 I dim g < [=1, (106)
where the basis functions are ordered such that if Q’" = Ul <i<; SUPP ¢!, then
Q < Q, QN (Q\Q1) =T, Vk>14+2, vi=1.  (107)

Such a partition into finite-dimensional parts can always be achieved by a recur-
sive construction, for if

[(CORCOMBRICONN (108)
satisfies (107), then there are at most a finite number of remaining basis functions
which: (a) are contained in ¢, (b) are not contained in [(¢") " |[(#2)"|---|(F) 1"

and (c) have supports which intersect Q. Choose a finite-dimensional ¢ to have
at least one of the basis functions satlsfymg both (a) and (b) and to contain all the
basis functions satisfying (c) (a finite number, since the model is SFD). Then

[ZONCON BN (109)
also satisfies (107), and such a recursive construction defines a suitable partition of
the whole of ¢™. o

We let the corresponding parameter vectors be denoted by 9]-'", 0;", etc., and
define Gram matrices (_;;;’ corresponding to the basis functions [(¢7")"|---|(#")"]"

and with respect to the space L*(Q[";wy) form>1,1>1,1 < j<p.
Let H", 1 < j < p, be the operators defined by

1 1
m _ dia I S s 110
g{ l( ) dim ¢1 xdim ¢, /l(Gm) d1m¢ ><d1m¢ } ( )

where (¢, ¢}, ...) is a sequence of positive numbers satisfying >, ¢/ = 1.
Now, let

m : m m m\T
0" = diag{w} H! ,whH? ... 0p, H"Y, " =(y,...,.0n", (111)

]m
where w; is chosen as follows. Let (cl,cz, ...) be a positive sequence satisfying
S cm =1, and let

rim = sup | (H") /24" (). (112)

Note that by the Kg-approximation property of the model, we must have r; > 0,
and since by the compact support and continuity of the basis functions we have
sup,||¢'(x)|| < +oo, hence we also have r;; < +o0o. Now let

Oy =12 (113)

Tjm
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The reason for defining H™ in the definition of I;” above instead of taking
H'™ = [ (as was the case in Theorem 4.1) is that we need an appropriate scaling to
deal with the problem of the countable number of terms in the expressions:

@M mmer,  1<j<p. (114)

Theorem 4.2.  Let {Kp}p>o be a smoothness class, and suppose {®™},,~ 1 is defined
by (81), where {®"},,>1 is a {Kp}p=0 SFD approximate model class. Consider the
system Za(%y) with functional uncertainty:

A; = Ky 0 AL (R wy;),027) 0 AL™ (R™; Wory), 0, I1<j<p, (115)
where wy; and w..; are known, but the uncertainty levels 0,,0.,; are unknown. Let
Em(') :E(rm7o(7(l)m7gg1)(-)7 (116)

where T™ and ®" are as in (81) and (111). If Qf < Q) < Q, Vm > 1, then there
exists M > 1 such that for allm > M:

1. (ZA(#), B (%rer)) is well-posed and x(t) — Qo as t — oo,
2. only a finite number of parameters are adapted,
3.

lim sup 2z, ), 2, (#.4)) (05 R, Qp', Q1) < (117)

m— o0

xef

Proof. The theorem follows analogously to that of Theorem 4.1, and the proof
technique of the global result in [FSR2], given the inequalities (119) and (120)
below. Inequality (119) is required to obtain a uniform bound on (6,,)” ()" 0,

(see inequality (95)) which leads to the uniform bound on V3" (by W' ), whilst

inequality (120) is required to obtain a uniform bound on ||(I;") 1/2 ¢;"(x)[| (which
forms part of the control effort bound).
First we let g)s be defined by (91) with Q = R". Choose M large, and then let
=10/(6™)T10---]1" be defined so that (9™)"¢" = (6™)"¢™ . Then
) O (0107 = (hy) @) (1) 6 (118)
an

0" M) oM < ch Gl (0RO

k=1 =1

< S BT O 1) IGO0 ]
k=1

= > G 1) TE T DT Vg
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o0
< >l @ "1 )
k=1
- M
2
Z ||L2(S_2,;”; W)
< (03 +qu). (119)

Now we derive the bound analogous to (104) that was required in bounding the
control effort term of the performance measure. By the definition of I, it follows
that '

1T 29 (x) Z@m 5124 H<Z%<1 (120)

hence completing the proof. |
5. Conclusions

We consider the closed-loop performance scaling question to be the fundamental
issue in the design and implementation of controllers based on function approx-
imators. We have proved in Section 3 that standard approximate adaptive control
designs lead to divergent closed-loop performance when the resolution of the ap-
proximator is increased in Scenario 1, i.e. the case where Qp' — {0}. It remains
open to establish whether bad scaling can be proved to occur for a fixed Q, and
whether poor scaling can occur in the SISO case.

For a simple class of systems, namely a tracking problem for a chain of inte-
grators, we have exhibited both global and semi-global control designs (Section 4)
which do not lead to divergent performance in Scenarios 1— 3 i e. the performance
is uniformly bounded in cases where Qf' — {0} and where = Q is fixed. Fur-
thermore, the proofs of the results give an explicit uniform performance bound.
These positive results can be generalised to wider classes of systems [KKK] with
backstepping controllers [FS].

The dynamics of the two designs are interesting. In the former case the divergent
performance can be roughly understood as follows. Because the model is mono-
resolution, a high adaption gain must be used to ensure a good transient tracking
performance. On the other hand, a uniformly high adaption gain leads to excessive
control effort via increased overshoots. In the latter designs the effective adaption
rates can be chosen to be lower for the basis functions corresponding to higher res-
olutions. In this manner we can ensure good transient tracking, whilst not leading
to high adaption gains which force excessive control effort.

The results in this paper give a strong mathematical incentive for studying func-
tion approximator designs as opposed to their parametric counterparts. In a prob-
lem specified by a functional uncertainty, the nonlinearities of the system are not
highly structured: they are specified solely by a norm bound. In contrast, a problem
specified by a parametric uncertainty has a highly structured nonlinearity which
is specified by both the parameters and the basis functions which they multiply. On
the other hand, in the approximate adaptive case, the regularity of the basis func-
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tions themselves can be exploited. Hence, in the approximate adaptive scenario we
have a much better handle on the nonlinearity and, e.g. the “worst case” system,
and can give meaningful performance results for whole classes of systems. In the
parametric case we can only expect to give good performance results for classes of
systems which impose particular sets of assumptions on the allowable nonlinear-
ities: more probably by proceeding on a case by case basis. This simply reflects the
fact that less structured uncertainties are simpler to handle than more structured
uncertainties. Furthermore, the approximate adaptive theory has a rich asymptotic
theory (as m — o0), which by definition has no counterpart in the parametric case.

Acknowledgements. The authors thank the reviewers for their careful reading of
the manuscript and for their many constructive comments.

Appendix. Proofs of the Results of Section 3

Proposition 3.1.  Consider the closed-loop system (Xr(%),Zm(%rer)) defined by
Sections 3.2 and 3.3. Then
9(2/(“?/[)).3,, et (0 R QO ,Ql) > 0(

111

), 1<j<p. (121)
m

Proof. Let f=(fi, /..., /) =(0,0,....00 €A, mj=1,1<j<p (ie %=u,
1 < j < p), and consider the zero reference signal y.f =0 € #er. Fix m and 1 <
J < p and consider the initial condition x(0) = x¢ defined by x¢; =0, i # j, xo; =
n/2. Applying the controller E,, it is straightforward to observe that x; =0,
0; = 0, u; =0 forall # > 0, and for i # j. Then

079" (x) =074 (0,...,0,x,0,...,0)
=D 0w, () I oty
k 1]
= o) Y O [T %, 0)
—-m<i<m k:&(k)=i 1#j
5T
=0, 5" (x;),

where we define

Z ejk 11 »e (122)

(k);= I#j

Rewriting the closed-loop system in terms of 6,, we only need consider the
(1 4+ 2m + 1)-dimensional system:

X=—0]s"(x;) —aix;,  x5(0) =n/2,

6 = o x;by D([—10(m), mo(m)], 57)s™ (x7),  6(0) =0, (123)

uj = —@Tsm(xj) — ajx;.
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Since R = diag(ry,...,r,), we clearly have

rjujz dt < W(ZA(”?/O)F (@ ref>>(07 R, 981, Ql), (124)

=m

J~{120|x/(f)|>f71}

where the left-hand side is computed for the system (123).
Let r =inf{s > 0 | dist{x(s),Q;} = 0}. As r < co by Theorem 2.1, we can es-
tablish the following inequality for u; = X; (x¢; > #;):

I3 t
Fsleoallling = || sudl = || v al =0 - (29
by an application of the Cauchy-Schwartz inequality. Hence
2
22
J > (0 (126)
To, 1%l 270, 4

Now we consider upper bounds on ||x;[| 12, -
By the first part of condition 4, Section 3.1, given any m > 1 we know that

O = (nVo]"/ Y1y/m)1 satisfies
] [
0rs™(x;) > #xj, Vx; e [0,7,]. (127)

Now consider the Lyapunov function:

QJij2 + (ém - é)T(em - 0) )

= 128
W 2(1] 20Cj-m ( )
Using the differential inequality
_ ~ ol
% < (O —0)"s™(x) — | aj + #) X (129)
we can establish on the interval [0, 7) that
. X = ~ ai + Vo' /m _ -
Wm < % (Qm - 0) TSm(Xj) - % Q/)Clz - (Hm - 0) TijjSm(Xj)
i i
ai + Vo' /m
SRR LS (130)
aj ’

since b; = Q;/a; (because of the Lyapunov equation A/ P; + P;A.; = —Q;, P € R,
A*j = —aj, bj = 2pj and bjaj = Qj) Hence

a9 [ g
Jox" ‘= Qj(%JrW)JO t
- Y (W, (0)— W,
Qj(%JrW)( o v
a; Q]<X]2(0) - ’712) 0)3;0_"4 131
= O+ Vo fm) ( 24, T ) Y
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and so we can establish

x2(0) — 5?)?
[ s O
To, HXHLZ[O,,]

(x2(0) — n2)2 2 77 \ L
> 0;( ]((2 1) (,-l—\/;) <Q]( (zai ’71)_’_92,5()(?7:71)
= 0(@) | (132)

Proposition 3.4. Let m>1, o™ >0, k >0, p, > 0 be arbitrary. Let (Y™, 0™)
(1 < j <p) denote the solution of the closed-loop system (Eym,Z,,(Y)), where

m

=" f’“) fm=0 '”) ¢;", 0" = k1. Assume further that the reference

signal Y™ is such that ¢"’(Yref) is persistently exciting. Then there exists &, > 0

such that if n§' < &, then

limsup[|07() — 0| < p,.  1<j<p, Vm=p. (133)

1— o0

Proof. Let m > f. Write the closed-loop system (X;»,Z,,) in the form
X = Ayxp+ Bi((0;— 0) 7 ¢,(Y™)) +dy(r), 1<j<p, x(0)=xo,

R (134)
0= /b (Y) +dy (1), 6(0)=0, 1<j<p,
where
dy(1) = Bi(0; — 6;(1) " (¢,(Y (1)) — ¢;(Y™ (1)), (135)
dy = ox"by(D(Qo, X)§( Y (1) — 4,( Y™ (1)) (136)

We denote solutions of this system by (x(¢,7,), 0(,7,)). We know from Theorem

2.1 that
sup limsup ||x(¢,7,)|| — O as ¢—0, (137)

O<npy<e 1=
and since V' (x(1,7,), 0(1,59)) < W, we also have
sup sup [|x(z,79)[| < o0 (138)

O<ny<e t—
and

sup sup ||0 — 0(1,5,)| < 0. (139)

0<ny<e t—©
Hence it follows that

sup limsup ||(d],d)|| — O as ¢—0. (140)

X7 3
O<py<e 1=

The right-hand side of (134) with (d;’/?,dg_“) =0 is locally Lipschitz, hence uni-
7
formly Lipschitz along the trajectories by (138), and also exponentially stable by
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(70). Hence by a simple modification of, e.g. Theorem 5.3.1 of [SB], we have
3K, > 0 such that

timsup | (x(1.170),0 = (1, 0))| < Koy limsup (e, o). (141)

— o0

Then it follows that 3¢,, > 0 such that

lim sup | (x(z,710), 0 = 0(2, o))l < p (142)
from which the result follows. [ |

Proposition 3.5. Let m > . Then there exists a reference trajectory Y € W
and &, > 0 such that if Y: R, — R" is continuous and

limsup | Y (1) — ¥ (0)] < &,

—o0

then ¢"(Y(-)) is persistently exciting for 1 < j < p.

Proof. Fix j, t > 0. The upper bound in the persistently excitation condition is
easily established for any continuous signal ¥ and 7 > 0:

+t
J (cTg(Y(1)))* dt < 2V lle])®. (143)
!

To establish the lower bound in the persistently excitation condition we argue as
follows.

By condition 3, Section 3.1, there are m’ = (2m + 1)” linearly independent basis
functions of each model component ;15,’” over the domain Q,. It easily follows
that there exist m’ disjoint points Zi,...,Z, € &, such that the matrix H,, =
(9% (Z1))1 <k, i< is Invertible. For x; € R", 1 <i < m’, define

Em(X] P ,Xm/) = (¢jk(zi + xi))lgi,k£i71’ (144)

and observe that E,,(0,0,...,0) = H,, and thus A(E,,(0,...,0)" E,(0,...,0)) > 0.
We define

V(g &) = - irﬁg - M Enm(x1, o X)) T Em(X1, -2 X)) (145)
Xt oo X0 | <&

Then there exists & > 0 such that if 0 <& < &/2, then 0 < v(¢;",¢) < oo. This is a

simple consequence of the continuity of the basis functions, the continuous depen-

dence of the eigenvalues of a matrix with respect to its entries and the previous

observation that A(E,,(0)” E,,(0)) > 0.

Let 7 > 0 be large enough such that there exist a sufficiently smooth periodic
signal yrof € Yy (ie. such that || Y™ <y, and Hygz/f/)H < y,) with period 7 for
which the sets

L) ={selt,t+1): || Zi — Y™ (s)| < &/2} (146)

have positive measure (i.e. m(I;(7)) > 0) for 1 <i < m'.
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Choose any continuous signal Y such that limsup, . || Y(s) — Y™ (s)|| < e We
show that for ¢ large enough

| T @) de = wile]? (147)

for some wy > 0. Since limsup, || Y(s) — Y™ (s)|| < e, there exists T > 0 such
that for s > T || Y (s) — Y™ (s)|| < &/2. Let ¢ > T. Therefore
0<m(l;(t)) <m({selt,t+7):||Z — Y(s)|| <&}), l<i<m'. (148)

Since Z,...,Z,  are disjoint there exists a system of pairwise disjoint (measur-
able) sets I;(7) = {se[t,t+1): ||Z; — Y(s)|| < &} such that m([;(¢)) >0, 1 <i<m'.
Then

[Tlemaroro) dr>2j O d 1<j<p (49)

Let 1 <i<m'. Applying the intermediate value theorem, we have that there
exist x; € R", ||x; — Z;|| < &(Y(¢) = x; for some ¢ € [;(¢)) such that

J}([) |CT¢;11(Y(I))|2 dt = |CT¢;"(xi)|2m(1i([)) > ‘L'0|CT¢;”()C,')|2, (150)

where 0 < 79 = inf,> 7 min; <;<,,» m(L(?)).
By the definition of v,

ey (x|
Z Ck(/l¢jk xl ][ (xl)

= CTEm(xl - Zla ey X! — Zm’)TEm(xl - Zl> cey X! — Zm’)c
> W En(x1 = Z1, . X = Zow)  E(X1 = Z1, .o X — Zo))|el?. (151)

Since ||x; — Z;|| < & it follows that ‘CT¢;71(X,)| > |lell? v(¢;", ém). Therefore

J TICT¢}"( Y(0))I? dt = wom'v(]", &m)|c]*. (152)

t

This completes the proof. ]
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