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An Asymptotic Scaling Analysis of LQ Performance for
an Approximate Adaptive Control Design*
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Abstract. We consider the adaptive tracking problem for a chain of inte-

grators, where the uncertainty is static and functional. The uncertainty is specified

by L2=Ly or weighted L2=Ly norm bounds. We analyse a standard Lyapunov-

based adaptive design which utilises a function approximator to induce a para-

metric uncertainty, on which the adaptive design is completed. Performance is

measured by a modified LQ cost functional, penalising both the tracking error

transient and the control e¤ort. With such a cost functional, it is shown that

a standard control design has divergent performance when the resolution of a

‘‘mono-resolution’’ approximator is increased. The class of ‘‘mono-resolution’’

approximators includes models popular in applications. A general construction

of a class of approximators and their associated controllers which have a uni-

formly bounded performance independent of the resolution of the approximator

is given.
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1. Introduction

The use of function approximators within adaptive control designs has been pop-
ular since the publication of the papers [SS] and [T]. The idea is to use standard
adaptive designs for problems which depend on non-parameterised uncertainties,
by utilising function approximators to induce an appropriate approximate param-
eterisation of unknown system functions. The non-parametric uncertainty has then
been converted into an uncertainty in the parameters of the function approxi-
mator, to which the standard adaptive designs can be applied, whilst the inherent
approximation error is simply treated as a disturbance acting on the system and
the standard robust modifications [NA] to the adaptive laws (dead-zones, projec-
tions, s modification, etc.) are made to ensure stability.

It is thus widely appreciated that function approximator-based adaptive
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control designs are essentially robust adaptive controllers, with the additional
twist that in general the approximation can only be valid over compact domains if
a finite-dimensional model is utilised. This gives the theory a semi-global charac-
teristic, whereby the transient must be constrained a priori to lie within the
model’s compact domain, either by high gain robust terms (often within a sliding
mode framework), by high adaption rates or by limiting the uncertainty. By care-
fully considering the spatial growth of the uncertainty, it is also possible to give
global designs based on models with dynamically varying dimension [FSR2].
Designs are available for systems with matched uncertainties and systems in the
strict feedback form and output feedback form, see e.g. [F].

Despite the large number of adaptive designs based on function approxi-
mators given in the literature, e.g. [SS], [YL] and [CK], little attention has been
paid to features (other than the semi-globality) of the approximation theoretic de-
signs which do not appear in the analogous parametric robust adaptive theory.
One notable exception to this point is the work in [CS], where a design is given
which is in some sense adaptive to the smoothness of the system.

In this paper we demonstrate that there are fundamental questions which
arise in the approximate adaptive theory which have no analogue in the para-
metric robust adaptive theory. These questions centre around the first stage of an
approximate adaptive approach: namely the choice of model (i.e. the function ap-
proximator). The fundamental question we address is whether increasing the res-
olution of the model leads to a degradation of the transient performance of the
closed-loop system. This question has high relevance since high resolution models
are utilised for three reasons:

Scenario 1. To guarantee a small asymptotic Ly tracking error: increasing
the model resolution decreases the approximation error, and thus permits greater
asymptotic tracking accuracy.

Scenario 2. Due to the conservatism of the approximation theoretic bounds
which relate approximator resolution to smoothness: when the bounds are con-
servative, overly high approximator resolutions are utilised to guarantee the re-
quired approximation error tolerance.

Scenario 3. Due to the fact that the smoothness of the nonlinearities is hard to
estimate in applications: a priori it is di‰cult to estimate the smoothness of the
nonlinearities of a system in the form required for the approximation theoretic
bounds.

Hence, it is desirable that scaling the model by increasing the resolution (typically
by increasing the dimensionality of the parameter space) does not detrimentally
a¤ect the transient performance.

To examine this question we formulate a non-singular linear-quadratic (LQ)
type cost, and examine the behaviour of this cost as the resolution of the function
approximator is increased. It is important to observe that we are penalising both
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the state and the control e¤ort in this cost as due to the presence of high gain so-
lutions, the question considered would be ill-posed for singular costs with no pen-
alty on the control. We then require techniques to compute both lower and upper
bounds on such costs. A technique for estimating an upper bound was developed
in previous work of the authors [FSR2], whilst a technical innovation of this arti-
cle is a method for estimating lower bounds.

Within the LQ framework we then compare the performances of two
classes of function approximator-based controllers as their respective resolutions
are increased. We find that two competing designs, one with a mono-resolution
and one with a multi-resolution function approximator, have substantially di¤er-
ent behaviour. A situation is identified where the cost of increasing the resolution
of mono-resolution design increases unboundedly (at the same time we prove that
the design yields a stable closed loop so the cost increase cannot be attributed to
losing stability); whilst in contrast the cost of increasing the resolution of a multi-
resolution function approximator is uniformly bounded.

A statement of greater precision is as follows. We consider systems SDðY0Þ,
where the system’s initial condition y0 lies inside a bounded set Y0, and where the
system’s nonlinearity f satisfies a matching condition and lies inside the bounded
set D. The uncertainty D is constrained by both spatial L2 and Ly norm bounds.
Given a bounded set of reference trajectories Yref , the worst case asymptotic
tracking requirement is specified by an error set Wm

0 . The adaptive controllers
XðFm; am;Wm

0 ÞðYref Þ considered in this paper are Lyapunov-based designs depen-
dent on both a function approximator Fm, where m indexes the parameter dimen-
sion, and on a tunable parameter am (an adaption gain). We measure performance
of a closed loop ðSDðY0Þ;XðFm; am;Wm

0 ÞÞðYref Þ by a modified worst case LQ cost
functional which is denoted by

Pm ¼ PðSDðY0Þ;XðFm; am;Wm
0 ÞðYref ÞÞ. ð1Þ

The essence of the modifications to the LQ cost functional is that the cost is not
measured inside the error-set Wm

0 . The cost is worst case with respect to the initial
conditions, reference trajectory and system, and is best case with respect to the
adaption gain (i.e. we are considering the optimally tuned controller).

In Section 3 we establish a negative result: demonstrating that scaling can be a
real issue for these function approximator designs. The class of uncertain systems
SDðY0Þ considered are MIMO systems of order one. The class of models consid-
ered are characterised by uniformly localised basis functions: this class includes B-
spline networks Fm defined on uniform knot lattices. Such networks are utilised in
many applications of approximate adaptive designs [JVL], [OZSP].1 For this class
we show that the designs do not scale when considering Scenario 1 above. In
particular, we show that if we satisfy a demand for higher asymptotic tracking
accuracy (i.e. Wm

0 ! f0g as m ! y) by increasing the resolution of the approxi-
mator, then the performance diverges although, e.g. stability is still maintained.

1 The class also includes the Gaussian Radial Basis function (RBF) networks of [SS], subject to an

unresolved conjecture (see Conjecture 3.7 below).
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Specifically we show that there is a choice of adaptive gains famgmb1 such that
for all su‰ciently large m, Pm < y, but for any choice of famgmb1 it follows that

lim sup
m!y

Pm ¼ y: ð2Þ

The poor scaling of performance is solely due to the control design, since
under perfect knowledge a feedback linearisation strategy has the property that
lim supm!y Pm < y.

More general control designs for output feedback and strict feedback systems
based on backstepping collapse to the controllers we are considering when applied
to these first-order systems. Therefore we can conclude that this undesirable per-
formance divergence is a feature of all these adaptive designs when coupled with
certain function approximators. We have therefore raised serious questions about
the applicability of many designs (and their generalisations) which are popular in
the connectionist communities.

In Section 4 we show that this degradation of performance can be avoided
in Scenarios 1–3 considered above. The class of systems SDðY0Þ considered is a
MIMO chain of integrators. This is not as general a class as one would ideally like,
but we take this as the first step in comparing the performance of adaptive con-
trol designs: given that this class of systems includes the class of first-order MIMO
systems considered earlier, we are able to conclude that for a nontrivial class of
systems these two designs di¤er substantially (in Scenario 1). Furthermore, exten-
sions of these positive results have also been made to classes of backstepping con-
trollers [FS].

Specifically, we give a general construction for controllers XðFm; am;Wm
0 Þ based

on a wide class of function approximators Fm which have the property that there
is a choice of famgmb1 such that

lim sup
m!y

Pm < y: ð3Þ

The results hold in both the cases of Wm
0 ! f0g (Scenario 1) and that of a con-

stant Wm
0 ¼ W0 (Scenarios 2 and 3). Results are given in both a semi-global set-

ting with finite-dimensional models (in which case the uncertainty level is required
knowledge) and in a global setting where the uncertainty level is not required
to be known a priori, but the function approximator is of countable dimension.
However, by restricting these infinite-dimensional approximator structures to be
semi-globally finite-dimensional (SFD), the global controllers can be realised as
finite-dimensional controllers since only a finite number of adaptive estimates are
updated (the number of updates is dependent on the uncertainty level), see, e.g.
[FSR2].

The essential restriction we impose on the approximator class is that higher
resolution models are generated by extending the basis function set. Thus func-
tion approximators based on series expansions such as polynomial bases, Fourier
series, wavelets, etc., are valid; and in a simple manner it is possible to take models
of any functional form, and by generating a controller based on the union of all

148 M. French, Cs. Szepesvári, and E. Rogers



the models below a particular resolution, also achieve uniformly bounded closed-
loop performance.

Whilst we are predominantly concerned with a question which is only ap-
plicable to function approximator-based designs, the techniques developed in this
paper should be of wider interest: we have to compute both upper and lower
bounds on an integral performance measure, techniques for which must be devel-
oped if any analytical comparison is to be made between, e.g. robust and adaptive
controllers. The upper bound theory extends that of [FSR2], where the resolution
scaling issue was first raised, whilst the lower bound estimates are completely
new.

2. Problem Formulation

2.1. Notation

We denote by k 
 k the 2-norm of vectors and all norms over vector-valued
functions will be defined by this norm. For example, for f A CðW;RnÞ, k f kCðW;RnÞ
is defined by k f kCðW;RnÞ ¼ k f kLyðW;RnÞ ¼ supx AWk f ðxÞk2. The matrix norm kxkQ
for a positive definite, symmetric matrix Q and vector x is defined by kxk2Q ¼
xTQx. An inner product for an inner product space H is denoted by h
; 
iH.
For a function space F with domain X and range Y we write FðX ;Y Þ, if Y ¼ R
we write FðX Þ. The order notation is defined by f ðxÞ ¼ OðxÞ if and only if
lim supkxk!yj f ðxÞj=kxk < y. Hence the statement f ðxÞbOðxÞ means bg such
that f ðxÞb gðxÞ and gðxÞ ¼ OðxÞ, similarly for f ðxÞaOðxÞ.

For a set WHRn, we let W� denote the interior, distðx;WÞ ¼ infy AWkx
 yk
and diamðWÞ ¼ supfjx
 yj: x; y A Wg. Elements of Euclidean spaces W ¼ Rm are
thought of as column vectors. We occasionally let 1 denote the vector
ð1; 1; . . . ; 1ÞT . lðRÞ; lðRÞ denote the maximum and minimum eigenvalues of a
matrix R. We define Rþ ¼ ft A R: tb 0g. A closed-loop system is said to be well-
posed if all solutions of the system are defined on Rþ, and all closed-loop signals
are bounded. The support of a function f is denoted by suppð f Þ.

2.2. Control Task Formulation

2.2.1. System Specification

We consider systems which are the union of p integrator chains each con-
trolled by a single input. The order of integration for the jth integrator (1a jap)

will be nj ð1a njÞ and its state will be denoted by Yj ¼ ðyj; yð1Þj ; . . . ; y
ðnj
1Þ
j ÞT A

Rnj . The control will be denoted u ¼ ðu1; . . . ; upÞT A Rp. The nonlinearities are
matched, and hence lie in the span of the control. The nonlinearity for the jth
system will be denoted by fj : Rn ! R. These are functions of the full state Y ¼
ðY1; . . . ;YpÞT A Rn, n ¼

Pp
j¼1 nj, of the system, and f : Rn ! Rp is defined by

f ðYÞ ¼ ð f1ðYÞ; . . . ; fpðY ÞÞT .
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We formalise this as follows: Let Aj A Rnj�nj , Bj A Rnj�1, 1a ja p, be defined:

Aj ¼

0 1 0 
 
 
 0

0 0 1 
 
 
 0

..

. ..
. ..

. . .
. ..

.

0 0 0 
 
 
 1

0 0 0 
 
 
 0

2
6666664

3
7777775
; Bj ¼

0

0

..

.

0

1

2
6666664

3
7777775
: ð4Þ

We consider systems of the form:

Sf ðY0Þ: _YYj ¼ AjYj þ Bjð fjðY1; . . . ;YpÞ þ ujÞ; 1a ja p; Y ð0Þ ¼ Y0: ð5Þ
Typically we are concerned with situations where f : Rn ! Rp is unknown and
lies within the set D:

f ¼ ð f1; . . . ; fpÞT A D1 � 
 
 
 � Dp ¼ D: ð6Þ

We define an uncertain system as

SDðY0Þ ¼ fSf ðY0Þ j f A Dg: ð7Þ

Throughout this paper we are concerned with uncertainty sets D with the follow-
ing property:

D j HKj XDðHj; d2jÞXDðFj; dyjÞ; 1a ja p; ð8Þ
where

DðHj ; d2jÞ ¼ f fj A Hj j k fjkHj
a d2jg; ð9Þ

DðFj; dyjÞ ¼ f fj A Fj j k fjkFj
a dyjg: ð10Þ

Here Hj is the space L2ðWÞ or the weighted space L2ðW;w2jÞ, and Fj is the
space LyðWÞ or the weighted space LyðW;wyjÞ,2 where WHRn. W will gener-
ally be compact in the unweighted cases, and global in the weighted case. K ¼
K1 � 
 
 
 � Kp HCðW;RpÞ is an approximation theoretic smoothness class, which
we will discuss subsequently. The motivation for modelling the uncertainty in both
an L2 and an Ly sense is discussed in [FSR2], but broadly speaking the L2 bound
su‰ces to give stability conditions and characterise the state performance, whereas
it is necessary to have (pointwise) Ly information to bound to the control e¤ort.

As initially our approximation domains W will be compact, we first consider
semi-global results, and so define an initial condition set as

Y0 ¼ fY0 A Rn j kY0ka g0g; ð11Þ

and let SDðY0Þ ¼ fSDðY0Þ jY0 AY0g. Given a reference trajectory, yref : Rp
þ ! Rp

þ,

yref A Cn1ðRþ;RÞ � Cn2ðRþ;RÞ � 
 
 
 � CnpðRþ;RÞ; ð12Þ
we denote

Y ref
j ¼ ðyref j ; y

ð1Þ
ref j

; . . . ; y
ðnj
1Þ
ref j

ÞT ; 1a ja p; Y ref ¼ ðY ref
1 ; . . . ;Y ref

p Þ ð13Þ

2 The weighted spaces L2ðW;w2Þ, LyðW;wyÞ are defined by the inner product h f ; gi ¼ k fgw2k2L2ðWÞ
and norm k f k ¼ k f ð
Þwyðk 
 kÞkLyðWÞ, respectively. We assume throughout that wy: Rþ ! Rþ is

monotonically decreasing and that the weights w2 lie in L1.
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(i.e. Y ref : Rp
þ ! Rn), and define a reference trajectory set as

Yref ¼
�
yref A Cn1ðRþ;RÞ � 
 
 
 � CnpðRþ;RÞ; j kY refkLyðRþÞ a g1;

max
1a jap

kyðnjÞref j
kLyðRþÞ a g2

	
; ð14Þ

where g1; g2 b 0 are fixed numbers, known to the control designer. It is also con-
venient to define

W2 ¼ fz A Rn j kzka g1gHW; (15)

so (14) implies that for any reference signal yref A Yref , Y
ref ðtÞ A W2 for all tb 0.

2.2.2. Stability and Performance: Definitions

Let W0 HRn be an a priori specified neighbourhood of the origin. The control

task is to give a controller Xðyref Þ which drives the worst case tracking error x ¼
ðx1; . . . ; xpÞT to W0 as t ! y, where x is defined by

xjð
Þ ¼ Yjð
Þ 
 Y ref
j ð
Þ; 1a ja p; ð16Þ

i.e. we want

sup
f AD

sup
Y0 AY0

sup
yref AYref

sup
solnsðS f ðY0Þ;Xðyref ÞÞ

lim
t!y

distfxðtÞ;W0g ¼ 0:3,4 (17)

Whilst demanding a good asymptotic worst case tracking error, the con-
trol designs will be judged by their transient performance. So let Qj A Rnj�nj be
a symmetric, positive definite matrix and let rj > 0 for 1a ja p. We let Q A
Rn � Rn, R A Rp � Rp be the block diagonal matrices Q ¼ diagðQ1; . . . ;QpÞ, R ¼
diagðr1; . . . ; rpÞ. Transient performance is then measured by the following worst
case LQ cost:

PðQ;R;W0;W1Þ

¼ PðSDðY0Þ;XðYref ÞÞðQ;R;W0;W1Þ

¼ sup
f AD

sup
Y0 AY0

sup
yref AYref

sup
solnsðS f ðY0Þ;Xðyref ÞÞ

ð
TW 0

xTQx dtþ
ð
TW1

uTRu dt

 !
; ð18Þ

where TW i
, i ¼ 0; 1, is defined:

TW i
¼ ftb 0 j xðtÞ ¼ YðtÞ 
 Y ref ðtÞ B Wig; i ¼ 0; 1; ð19Þ

for suitable neighbourhoods W0;W1 of 0 A Rn. Here xðtÞ and uðtÞ denote the track-
ing error and control signals for the (well-posed) system ðSf ðY0Þ;Xðyref ÞÞ.

We motivate this cost as follows. It is reasonable to penalise the state error only

3 For notational simplicity, both here and in what follows, we do not index closed-loop signals x; u,

etc., by the closed loop to which they belong: e.g. for x, one should always read xðS f ðY0Þ;Xð yref ÞÞ, etc.
4 The inner supremum is taken over all solutions of the closed loop: it is required as in general the

uniqueness of solutions cannot be established, e.g. for controllers with a dead-zone modification [PI].
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when it lies above the desired accuracy. It is also reasonable to penalise the con-
trol cost with respect to the same threshold, i.e. to take W1 ¼ W0. However, we
are interested in the behaviour as W0 ! f0g. Note that if the nonlinearity of sys-
tem (5) is known (e.g. D ¼ f f 0g), then even the feedback linearisation strategy,

uj ¼ 
f 0j 
 aT
j xj þ y

ðnÞ
ref j

; 1a ja p ð20Þ

(see Section 2.4 for the definition of aj), yields

PðQ;R;W0;W0Þ ! y ð21Þ

as W0 ! f0g for Y0 6¼ f0g. However, for the feedback linearisation strategy we
can also establish:

PðQ; 0;W0;W0ÞaPðQ; 0;q;qÞ < y; EW0 HRn; ð22Þ

so it follows that the divergent behaviour in (21) is solely due to the control
e¤ort term. There are many di¤erent ways of modifying the cost to prevent this
divergence whilst still penalising the control e¤ort. Here we elect to consider cost
functionals of the form PðQ;R;W0;W1Þ. This is a reasonable basis to judge the
behaviour of adaptive designs as W0 ! f0g (for a fixed W1), as the perfect feed-
back linearisation strategy gives uniformly bounded behaviour:

PðQ;R;W0;W1ÞaPðQ;R; f0g;W1Þ < y; EW0 HRn: ð23Þ

2.3. Approximation Theory and Notation

To define the control design and to formulate the problem investigated in this
paper precisely, we first introduce the notion of a smoothness class and that of a
linearly parameterised approximate model class.

For WHRn, a smoothness class is a dense nested set of subsets fKbgb�0 of
CðWÞ (i.e. Kb1 HKb2 HCðWÞ for all b1 a b2). Typically a smoothness class is
specified by Lipschitz constraints, or by bounds in Sobolev spaces as is typical
in approximation theory. A model class is a sequence of model bases ffmgm�1,5
fm: W ! Wm where Wm is a Euclidean space called the weight space of the mth
model. Typically dim Wm, the dimension of fm, will be a divergent function of m.

Generic approximation theory furnishes us with a partially defined function
r: Rþ � Rþ ! N, called the dimension function that satisfies

sup
f AKb

inf
y AWrðb; eÞ

k f 
 yTfrðb; eÞkCðWÞ < e; ð24Þ

for any smoothness parameter b and approximation error bound e in the domain
of r. If dom r ¼ Rþ � Rþ, then the model class is said to be a fKbgb�0 approxi-
mate model class. For the case of compact W, there are many di¤erent con-
structions of approximate model classes with finite-dimensional bases. As an

5 We use superscripts to denote both powers and index quantities, the usage is determined by context.
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example, if fm is the polynomial basis fm ¼ ½1; x; x2; . . . ; xm�, W ¼ ½a; b� and Kb is
the Lipschitz-class,

Kb ¼ f f A C½a; b� j j f ðxÞ 
 f ðyÞja bjx
 yj; Ex; y A ½a; b�g; ð25Þ

then Jackson’s theorem [R] gives the dimension function rðb; eÞ ¼ bðb
 aÞ=3e.
For non-compact W, given appropriate regularity, approximate model classes can
also be constructed with bases of countable dimension. In the final section in this
paper we consider such a model class.

In this paper we are concerned with the approximation of functions in
CðRn;RpÞ, i.e. vector-valued multivariate approximation. For simplicity, we re-
strict the exposition here to componentwise approximation of these vector-valued
functions where the functions corresponding to the individual vector components
are approximated independently of each other with a separate set of (multi-
variable) function approximators. The corresponding model will be denoted by
Fm: Rn ! Wm1

� 
 
 
 �Wmp
, where Fm ¼ ðfm

1 ; . . . ; f
m
p Þ

T , fm
j : Rn ! Wmj

, where
for notational simplicity, we further assume mj ¼ m for 1a ja p and take the
same model basis for each component fm

j ¼ fm
k for 1a j, ka p. Similarly, we

consider the multi-output smoothness class fKbgbb0, Kb HCðW;RpÞ as defined
by

Kb ¼ K 0
b � K 0

b � 
 
 
 � K 0
b ¼ ðK 0

bÞ
p ð26Þ

for some smoothness class fK 0
bgbb0, K

0
b HCðWÞ.

2.4. Controller Design

The class of controllers considered in this paper are adaptive controllers derived
from a simple Lyapunov analysis; as such the designs are well known in the lit-
erature, see, e.g. [SS], [KKK], etc. It is important to observe that more complex
backstepping designs such as those for the output feedback form and the strict
feedback form reduce to the controllers we are considering when applied to MIMO
systems of relative degree one, see e.g. [F], [FR] and [FSR1] for dead-zone modi-
fied backstepping designs.

The control is taken to be

uj ¼ 
ŷyT
j fjðYÞ 
 aT

j xj þ y
ref

ðnÞ
j

; 1a ja p; ð27Þ

where aj A Rnj is chosen such that the matrices

A�j ¼ Aj 
 Bja
T
j ; 1a ja p; ð28Þ

are Hurwitz. The dynamics of the estimator ŷyj A Wmj
is then given by an adaptive

law of the form:

_̂
yŷyyj ¼ aj x

T
j bjDðW0; xÞGjfjðYÞ; ŷyjð0Þ ¼ 0 A Wmj

; 1a ja p; ð29Þ

where Gj A Rdim Wmj
�dim Wmj is a positive definite matrix, called the adaptive struc-

ture matrix, bj A Rdim Wmj
�1 is a weighting vector (to be defined below), 0 < aj A R

is the adaption gain and DðW0; 
Þ is the dead-zone function, defined to be the
characteristic function of RnnW0. We further assume that fj A Hj, and is
locally Lipschitz continuous. We define G ¼ diagðG1; . . . ;GpÞ, b ¼ ðb1; . . . ; bpÞT
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and a ¼ ða1; . . . ; apÞT . Throughout this paper let Pj be the solution to the
Lyapunov equation

AT
�jPj þ PjA�j ¼ 
Qj ; 1a ja p;

where recall that Qj ¼ QT
j > 0. Define

P ¼ diagfP1; . . . ;Ppg; ð30Þ
and let

bj ¼ ðPT
j þ PjÞBj; 1a ja p:

Equations (27) and (29) then define the controller

Xðyref Þ ¼ XðG; a;F;W0Þðyref Þ; ð31Þ

and together with (5) yield the following closed-loop system ðSf ðY0Þ;Xðyref ÞÞ:

_xxj ¼ A�jxj þ Bjððyj 
 ŷyjÞTfjðY Þ þ dfj ðY ÞÞ; 1a ja p;

xð0Þ ¼ Yð0Þ 
 Y ref ð0Þ;
_̂
yŷyyj ¼ aj x

T
j bjDðW0; xÞGjfjðYÞ; 1a ja p; ŷyjð0Þ ¼ 0;

ð32Þ

where dfjðY Þ ¼ fjðYÞ 
 yT
j fjðY Þ, and yj is such that

kdfjðY ÞkCðWÞ a 2 inf
Q AWm

k fj 
 QTfjkCðWÞ:6 ð33Þ

We let y ¼ ðy1; . . . ; ypÞT and df ¼ ðdf1; . . . ; dfpÞ
T .

Throughout the paper we take W0, W1 to be of the form

W0 ¼ fx A Rn j xTPxa h20g;

W1 ¼ fx A Rn j xTPxa h21g; ð34Þ

for some h0; h1 b 0. We define the Hj Gram matrix Gj of the model component
fj : Rn ! Wmj

by

Gj ¼ fg j
ikg1ai;kadim Wm

; g
j
ik ¼ hðjjÞi; ðjjÞkiHj

: ð35Þ

2.5. Basic Stability Result

We now give the basic stability/performance result concerning such controllers.

Theorem 2.1. Let WHRn be a closed set. Consider the system SDðY0Þ with func-

tional uncertainty:

D j HDðL2ðW;w2jÞ; d2jÞXDðLyðW;wyjÞ; dyjÞ; 1a ja p; ð36Þ

6 The factor of 2 in (33) is purely for mathematical convenience, if best approximations exist, then

the factor could be removed, and, in general, the factor could be taken to be any number strictly larger

than 1.
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where w2j , d2j and wyj are known and the cost function PðSDðY0Þ;XðYref ÞÞðQ;R;W0;W1Þ
is defined by (18). Let

Xð
Þ ¼ XðG; a;F;W0Þð
Þ; ð37Þ
and define

Wa ¼ maxflðPÞðg0 þ g1Þ
2; h20g þ

Xp
j¼1

1

2aj

ðd2j þ supfj ADkdfjkL2ðW;w2jÞÞ
2

lðGjÞlðGjÞ
; ð38Þ

where Gj is the L
2ðW;w2jÞ Gram matrix of the model component fj , and g0; g1 define

the constraints on Y0 and Yref , respectively (see (11) and (14)). Further, P is defined

by (30). If

1. h0 satisfies the inequality:

h0 b
2kbk
lðQÞ sup

f AD
kdf kCðW;RpÞ; ð39Þ

2. 0 A W0 HW1 HW,

3. the adaption gain a > 0 is such that

z A Rn j zTPza
ffiffiffiffiffiffiffi
Wa

p
þ

ffiffiffiffiffiffiffiffiffiffi
lðPÞ

q
g1

� �2( )
HW�; ð40Þ

then:

1. ðSDðY0Þ;XðYref ÞÞ is well-posed; for any reference signal yref A Yref , xðtÞ ! W0

as t ! y, where xðtÞ is defined by (16). Also, Y ðtÞ A W for all tb 0,
2.

PðSDðY0Þ;XðYref ÞÞðQ;R;W0;W1Þ < y: ð41Þ

Proof. This result is obtained by a Lyapunov analysis, and is a simple extension
of the stabilisation results of [F] and [FSR2]; hence we only sketch the proof. In
particular, the well-posedness of the system is not dealt with here.

Let yref A Yref , f A D, y0 A Y0, and initially suppose x0 B W0. Consider
ðSf ðy0Þ;Xðyref ÞÞ and define V : Rn �Wm1 � 
 
 
 �Wmp ! R by

Vðx; ŶYÞ ¼ xTPxþ
Xp
j¼1

1

2aj
ðyj 
 ŷyjÞTG
1

j ðyj 
 ŷyjÞ; ð42Þ

where yj is defined by (33). Let Vt ¼ VðxðtÞ; ŶYðtÞÞ, and TW i
, i ¼ 0; 1, be defined

by (19). Some straightforward inequalities establish that V0 aWa. If Y A W and
x B W0, then

_VVt ¼ 
xTQxþ xTbdf ðYÞa
ðlðQÞ 
 gÞkxk2; ð43Þ

where g ¼ kbkkdf kCðW;RpÞ=diamðW0Þ. Since by assumption ga lðQÞ=2, it follows
that the right-hand side of (43) is negative. Hence by condition (40), and a level set
argument, we can see that the V0 level set of V is invariant, hence the closed-loop
signals are bounded: in particular YðtÞ is bounded by W. By definition of the dead-
zone, we can establish that Vt is decreasing on TW 0

and hence by inequality (43)
that xðtÞ ! W0. The boundedness of the performance follows from the continuity
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of x; u, the fact that xðtÞ; uðtÞ can be bounded in terms of Vt (and hence uniformly
by Wa), the measurability of TW 0

and TW1
and the fact that

mðTW1
ÞamðTW 0

Þa
V0 
 inf t ATW 0

Vt

inf t ATW 0
j _VVðtÞj

< y: ð44Þ

The case x0 A W0 follows similarly by showing Vt � aWa where t� ¼
infftb 0 j xðtÞ B W0g. 9

The above theorem is given weight by the fact that by taking W to be compact,
there are a wide variety of finite-dimensional models satisfying the conditions of
the theorem. Any fKbgbb0 approximate model satisfies inequality (39) as m ! y,
and by choosing a, condition (40) can be satisfied, provided

be > 0 such that(
z A Rn j zTPza max

ffiffiffiffiffiffiffiffiffiffi
lðPÞ

q
ðg0 þ g1Þ; h0

� 	
þ

ffiffiffiffiffiffiffiffiffiffi
lðPÞ

q
g1

� �2
þ e

)
HW:

ð45Þ

However, it is important to observe that a large a > 0 could lead to excessive con-

trol e¤ort. Note that condition (40) restricts the L2 uncertainty level for a bounded
W; condition (40) is a su‰cient condition to ensure the state remains in the region
where the approximation accuracy is small and clearly a greater uncertainty level
will generally lead to a worse output transient for a fixed a > 0. Violation of con-
dition (40) can easily lead to complete instability: see [FSR2] for an example.

Note further that this theorem is completely constructive, all the required gains
can be computed from the conditions. Explicit bounds for PðQ;R;W0;W0Þ for the
case of stabilisation can be found in [FSR2], these can easily be generalised to the
situation considered here.

2.6. Formulation of the Main Results

The problem we now consider is as follows: given a fixed uncertainty D, does
the performance degrade as the dimensionality of the model increases? In a trivial
manner performance can diverge if increasing the dimension of the model causes
a loss of stability in the system, by violating condition (40). However, as noted
above, if condition (45) is satisfied, then stability can always be maintained by
choosing the adaption gain appropriately, so the question we address is whether
the performance degrades irrespective of the choice of gains.

Section 3 shows that the performance degrades as the resolution of standard
model-based controllers increases. We consider Scenario 1 where we are interested
in decreasing the asymptotic Ly error e by increasing the model resolution (m). In-
creasing the model’s resolution reduces the approximation error, and permits a
smaller dead-zone (Wm

0 ), hence leading to improved asymptotic Ly tracking. Spe-
cifically we construct:

1. a class of models Fm with localised basis functions,
2. a corresponding set of decreasing Ly tracking requirements specified by the

sets fWm
0 gmb1 (W

m
0 ! f0g as m ! y),

3. a nontrivial choice of D, Yref satisfying the constraints listed in Section 2.2,
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for which the associated controller given by

Xmð
Þ ¼ XðI ; am;Fm;Wm
0 Þð
Þ ð46Þ

has the properties that there exists Mb 1 and a positive sequence famgmb1 such
that

PðSDðY0Þ;XmðYref ÞÞðQ;R;Wm
0 ;W1Þ < y; EmbM; ð47Þ

but for all positive sequences famgmb1 the performance diverges as m ! y:

lim sup
m!y

PðSDðY0Þ;XmðYref ÞÞðQ;R;Wm
0 ;W1Þ ¼ y: ð48Þ

In Section 4 we give a general construction for a model class whose associated
controller performance is uniformly bounded as the model resolution increases, i.e.
we construct a class of models fFmgmb1 where the associated controller

Xmð
Þ ¼ XðGm; am;Fm;Wm
0 Þð
Þ ð49Þ

is such that
lim sup
m!y

PðSDðY0Þ;XmðYref ÞÞðQ;R;Wm
0 ;W1Þ < y: ð50Þ

Thus whilst there may be a price associated with increasing the resolution of
the model; the worst scenario of divergence can be avoided. In this case W0 can
either be fixed independent of m, e.g. Wm

0 ¼ W1, or can, e.g. have the property that
Wm

0 !f0g as m!y. In the former case the interest in the asymptotic result arises
from quantifying whether an overly large model may degrade the performance. As
observed previously, overly large models are often utilized as in Scenario 2 or 3 of
the Introduction (i.e. due to conservatism in the dimension function r or due to the
inherent di‰culties of determining b). In the latter case we consider Scenario 1,
where the resolution is increased to improve the asymptotic tracking accuracy.

3. Divergent Performance of Mono-Resolution Models

In this section we develop a class of examples which have divergent closed-loop
performance as the model dimension is increased, irrespective of the choice of the
adaptive gain.

3.1. Model Structure

We first construct a multivariate model on the domain

W¼ ½
h; h�n1 � 
 
 
 � ½
h; h�np : ð51Þ

We assume the following properties on the model structure:

1. (Basis function). Let F : R ! R be such that F is continuous, F has a maxi-
mum at 0, Fð0Þ > 0, and FðxÞb 0, Ex A R.

2. (Tensor product). Define sm: R ! R2mþ1 by sm ¼ ðjm

m; j

m

mþ1; . . . ; j

m
m
1; j

m
m Þ

for mb 1 where
jm
i ðxÞ ¼ Fðmx
 hiÞ; 
ma iam: ð52Þ
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We define a multivariate model Fm: Rn !ðRð2mþ1ÞnÞp, Fm ¼ ðfm
1 ; . . . ; f

m
p Þ

T ,
fm
j : Rn ! Rð2mþ1Þn , 1a ja p, by the tensor product construction:

fm
j ðxÞ ¼ fm

j ðx1; . . . ; xnÞ ¼ smðx1Þn smðx2Þn 
 
 
 n smðxnÞ ð53Þ

(note that fm
j ¼ fm

k for 1a j, ka p), so that for some suitable bijection

x: f1; 2; . . . ; ð2mþ 1Þng ! f
m;
mþ 1; . . . ;mgn ð54Þ
we can write

ðfm
j Þkðx1; . . . ; xnÞ ¼ jm

xðkÞ1ðx1Þj
m
xðkÞ2ðx2Þ 
 
 
 j

m
xðkÞnðxnÞ: ð55Þ

The corresponding weights are denoted by ŷym
j A Wmj

¼ Rð2mþ1Þn . We let
x: N ! Nn denote the map xðkÞ ¼ ði1; . . . ; inÞ.

3. (Linear Independence). The functions fðfm
j ÞkjW2

: W2 ! Rg
makam are lin-
early independent for all 1a ja p (recall that W2 is specified by (15)).

4. (Uniform strength). There exist constants 11;12 such that for all mb 1,

0 < 11 a inf
x AW2

j1Tfm
j ðxÞja sup

x AW2

j1Tfm
j ðxÞja12; 1a ja p: ð56Þ

Note that condition 4 implies an exponential spatial decay rate for the function F .

3.1.1. Examples: B-Spline and Gaussian RBF Networks

Many common models utilised in approximate adaptive designs satisfy the above
assumptions. In particular consider the Gaussian radial basis function networks
defined on the regular grid:

LjðmÞ ¼ f
h; . . . ;
hþ kh=m; . . . ; h
 h=m; hgn; ð57Þ

LðmÞ ¼ L1ðmÞ �L2ðmÞ � 
 
 
 �LpðmÞ ð58Þ
and obtained by taking

F ðxÞ ¼ expð
rx2Þ; ð59Þ
and then following the tensor-product construction of the previous section (see
conditions 1 and 2). This yields the familiar basis functions with the scaling of,
e.g. [SS]:

fm
jk ¼ exp 
m2r x
 h

m
xðkÞ

��� ���2� �
: ð60Þ

Here xðkÞ A f
m;
mþ 1; . . . ;mgn is viewed as an element of Nn.
Condition 3 follows from the linear independence of fðfm

j Þk: Rn ! Rg
makam

and the analyticity of the Gaussian function. Condition 4 follows from the in-
equalities

0 < expð
nrhÞa j1Tfm
j ðxÞja j1Tfm

j ð0Þja 1þ
Xy
j¼1

expð
rh2j2Þ; Ex A Rn;

ð61Þ
since the right-hand side of the final inequality clearly does not depend on m and
is easily shown to be convergent by, e.g. the ratio test. Thus the standard lattice-
based Gaussian RBFs satisfy conditions 1–4.
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For the kth-order B-spline networks we take F to be the k-fold convolution
of the characteristic function on 
1

2;
1
2

� �
with itself. The multivariate tensor prod-

uct B-splines are then given by following the tensor-product construction of con-
ditions 1 and 2 of the previous section. The linear independence of the B-spline
basis functions over their domain of definition is a standard fact, hence condition
3 follows if W2 ¼

W

. Condition 4 follows from the fact that B-splines form a par-
tition of unity.

3.2. System Structure

We take pb 2, nj ¼ 1 for 1a ja p. The initial condition set, Y0, and reference
signal set, Yref , are defined by g0; g1; g2 > 0. Let femgmb1 be a sequence of approxi-
mation error bounds where em > 0, Emb1, and where em monotonically decreases
to zero. The trick is to define the smoothness class fKbgbb0 so that the em is an ap-
proximation error bound for the model fm

j , 1a ja p. In particular, we define the
smoothness class fKbgbb0 as follows:

Kb ¼ K 0
b � 
 
 
 � K 0

b;
where

K 0
b ¼ 7

mbb
f f A CðWÞ j supp f H

W

; f ¼ yTfm
j þ d; y A Wm; kdkCðWÞ a emg:

ð62Þ

The uncertainty set is taken to be

D j ¼ K 0
b XDðL2ðWÞ; d2jÞXDðLyðWÞ; dyjÞ; d2j; dyj > 0; bb 0; 1a ja p;

ð63Þ
where W ¼ Rn. This is equivalent to the knowledge of a dimension function r

with the property that
rðb; emÞ ¼ dim Wm; Emb 1: ð64Þ

If span Fm H span Fmþ1 (such as with B-splines defined on refined lattices) it is
straightforward to observe that the smoothness class Kb is non-trivial for any se-
quence femgmb1 and span Fm HKb. On the other hand, if span Fm Q span Fmþ1

as for the Gaussian RBF model, then the rate of decay is critical in establishing
that span Fm HKb. For the remainder of this section we assume that span Fm H
Kb for all mb 1.

We have introduced a requirement that the supports of the nonlinearities are
contained in

W

. This is simply for convenience, so that the stability at large can be
established independently of the choice of a. In particular it allows us to take
W2 ¼

W

(hence that condition 3 can be verified for, e.g. the compactly supported
B-spline basis), without introducing instability (due to the violation of condition
(40)).

3.3. Controller and Cost Functional

The performance is measured by the cost functional PðQ;R;Wm
0 ;W1Þ. W1 is defined

by h1 (see (34)) and is fixed independently of m, whereas Wm
0 is defined by hm

0 :

hm
0 ¼ 2kbkem

lðQÞ ; ð65Þ
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where em is as in Section 3.2. Given a model structure fFmgmb1 as defined in
Section 3.1, the controllers fXmð
Þgmb1 are defined by

Xmð
Þ ¼ XðI ; am;Fm;Wm
0 Þð
Þ: ð66Þ

3.4. A Theorem Proving the Lack of Scalability

We now demonstrate that the class of examples defined above su¤er from diver-
gent closed-loop behaviour as m ! y. By applying Theorem 2.1 to the closed
loop ðSDðY0Þ;XmðYref ÞÞ defined by Sections 3.2 and 3.3, we can show that there
exists a positive sequence famgmb1 such that

PðQ;R;Wm
0 ;W1Þ < y; Emb b: ð67Þ

Therefore there is a choice of adaption gain which gives a finite performance at
each model resolution; we now establish that there can be no uniform bound.

Firstly we give a lower bound for the control cost:

Proposition 3.1. Consider the closed-loop system ðSDðY0Þ;XmðYref ÞÞ defined by

Sections 3.2 and 3.3. Then

PðSDðY0Þ;XmðYref ÞÞð0;R;W
m
0 ;W1ÞbO

ffiffiffiffiffiffi
am
j

m

r !
; 1a ja p: ð68Þ

Proof. See the Appendix. 9

The important feature of this bound is that if we can force am
j to have greater

than linear growth in m, then the control e¤ort diverges. Therefore we next address
the scaling of the state performance. In the following results we are able to com-
pute the state cost accurately, and show that am

j must be selected to have greater
than linear growth to stop the state performance from diverging. This essentially
shows that divergence of the full cost is inevitable irrespective of the choice of am

j .
To compute the state performance accurately we exploit the fact that persis-

tently exciting reference signals can cause parameter convergence. An extension of
a well-known calculation [KKK] then computes the state performance accurately
(see the proof of Theorem 3.6). Recall the following definition and theorem:

Definition 3.2. A function x: Rþ ! Rm is said to be ðt;w1;w2Þ persistently

exciting if there exists T > 0 such that for all tbT and for all c A Rm,

w2kck2 b
ð tþt

t

ðcTxðtÞÞ2 dtbw1kck2: ð69Þ

Theorem 3.3. Consider the (unperturbed ) system:

_xxj ¼ A�jxj þ Bjððyj 
 ŷyjÞTfjðY ref ÞÞ; 1a ja p;

_̂
yŷyyj ¼ aj x

T
j bjfjðY ref Þ; 1a ja p:

ð70Þ

If fjðY ref Þ is persistently exciting, then ðxjðtÞ; ðyj 
 ŷyjÞðtÞÞ is globally exponentially

stable.
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Proof. This is the standard result on the exponential stability of systems with
persistently excited regressors, see, e.g. Theorem 2.6.5 of [SB]. 9

To be able to establish parameter convergence for our controllers, we need a
similar result in the presence of a small dead-zone. The following result establishes
the practical convergence of the parameter estimators for su‰ciently small dead-
zones.

Proposition 3.4. Let mb 1, am > 0, k > 0, rm > 0 be arbitrary. Let ðY m; ŷymÞ
ð1a ja pÞ denote the solution of the closed-loop system ðSf m ;XmðY ref

m ÞÞ, where
f m ¼ ð f m

1 ; . . . ; f m
p ÞT , f m

j ¼ ðym
j ÞTfm

j , y
m
j ¼ k1. Assume further that the reference

signal Y ref
m is such that fm

j ðY ref
m Þ is persistently exciting. Then there exists em > 0

such that if hm
0 a em, then

lim sup
t!y

kŷym
j ðtÞ 
 ym

j ka rm; 1a ja p; Emb b: ð71Þ

Proof. See the Appendix. 9

The critical step is to establish the existence of a persistently exciting reference
signal Y ref A Yref . The proof of the following result constructs (for fixed m) a sig-
nal yref A Yref which guarantees that the regressors fm

j ðY Þ, 1a ja p, are persis-
tently exciting. The construction is an extension of the ideas in [KNW].

Proposition 3.5. Let mb b. Then there exists a reference trajectory Y ref
m A Yref

and ~eem > 0 such that if Y : Rþ ! Rn is continuous and

lim sup
t!y

kYðtÞ 
 Y ref
m ðtÞka ~eem;

then fm
j ðYð
ÞÞ is persistently exciting for 1a ja p.

Proof. See the Appendix. 9

We now give the main result of this section of the paper.

Theorem 3.6. There exists a sequence femgmb1 defining both the smoothness class

Kb and the dead-zone by (62) and (65), respectively, such that if

span Fm HKb; Emb b; ð72Þ

and D, Xm are defined by

D j ¼ K 0
b XDðL2ðWÞ; d2jÞXDðLyðWÞ; dyjÞ; 1a ja p; ð73Þ

Xmð
Þ ¼ XðI ; am;Fm;Wm
0 Þð
Þ; ð74Þ

then

1. there exists a positive sequence famgmb1 such that

PðSDðY0Þ;XmðYref ÞÞðQ;R;Wm
0 ;W1Þ < y; Emb b; ð75Þ

but,
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2. for all sequences famgmb1,

PðSDðY0Þ;XmðYref ÞÞðQ;R;Wm
0 ;W1ÞbOðmð p
1Þ=3Þ: ð76Þ

Proof. Define the sequence femgmb1 by

em ¼ min
lðQÞ
2kbk ~eem; em
� �

; ð77Þ

where ~eem and em are defined by Propositions 3.5 and 3.4, respectively.
Inequality (75) follows from Theorem 2.1. To establish inequality (76) we

first consider the state performance. We apply the construction of Proposition
3.4 together with Proposition 3.5. For each mb 1 let f m

j ¼ k1Tfm
j , where k > 0

is chosen such that f m
j A D (e.g. one may choose k ¼ 1=12 minðdy; d2=mðWÞÞ).

Let Y ref
m be the reference signal whose existence is proved in Proposition 3.5 and

let ðY ; ŷyÞ be the solution of the closed-loop system ðSf mðY0Þ;Xmðyref ÞÞ. Then
lim supt!ykY ref

m ðtÞ 
 YðtÞka hm
0 a ~eem and thus fm

j ðY ðtÞÞ is persistently exciting,
by Proposition 3.5.

Therefore taking rm ¼ r > 0 and applying Proposition 3.4, we have

ð
TWm

0

xTQx dt ¼
ð
TWm

0


 _VV dt

¼ Vð0Þ 
 lim sup
t!y

VðtÞ

¼ xT
0 Px0 


2kbkem
lðQÞ

þ lim sup
t!y

Xp
j¼1

1

2am
j

ðyT
j yj 
 ðyj 
 ŷyjðtÞÞTðyj 
 ŷyjðtÞÞÞ

¼ xT
0 Px0 


2kbkem
lðQÞ þ lim sup

t!y

Xp
j¼1

1

2am
j

ðyT
j yj 
 rÞ

¼ O mp
Xp
j¼1

1

2am
j

 !

¼ O
mp

am
j

 !
; 1a ja p: ð78Þ

However, by Proposition 3.1,

PðQ;R;Wm
0 ;W1ÞbO

ffiffiffiffiffiffi
am
j

m

r !
; 1a ja p: ð79Þ
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Combining this with (78) we have

PðQ;R;Wm
0 ;W1ÞbO max

ffiffiffiffiffiffi
am
j

m

r
;
mp

am
j

 ! !

bOðmð p
1Þ=3Þ; 1a ja p; ð80Þ

as required. 9

We have therefore established that a wide class of models lead to divergent

closed-loop performance when the resolution of the approximator is increased.

It is fair to criticise the construction due to the excessively fast rate of conver-
gence required for em and hence the required rate of shrinking of the dead-zone.
Indeed, it can be argued that unless hm

0 and hence em can taken to have a poly-
nomial decay, then the smoothness class is not prototypical of standard smooth-
ness classes widely considered in the approximation literature, where we can expect

the approximation errors em to be of the order of ð1=mpÞb, where bb 0 is the mea-
sure of the smoothness. For example, if the decay is superpolynomial, then the
Gaussian RBF considered previously yields the smoothness class K 0

b ¼ f0g which
clearly does not satisfy the requirement that span Fm HKb, Emb b. We formalise
this as a conjecture:

Conjecture 3.7. The decay rate of e in the definition of the smoothness class K in

Theorem 3.6 can be taken to be polynomial.

We consider the resolution of this conjecture to be an important open issue in this
field.

Of course, as observed above, model classes such as the B-splines satisfy the
requirements of the theorem regardless of the decay rate, and thus we have indi-
cated that the scaling problem is a real issue in these Lyapunov-based designs.

4. A General Design for Resolution Scalability

In this section we give a general construction for resolution scalability based on
any approximate model class derived from basis extensions. Since the results will
hold for any sequence of dead-zones Wm

0 HW of the form of (34), it follows that
the results are applicable in Scenarios 1–3.

Let f~FFk: W ! Wkgkb1 be a sequence of models, and define

Fm ¼ ½~FF1j~FF2j 
 
 
 j~FFm�: ð81Þ

We assume that fFmgmb1 is a fKbgbb0 approximate model class. Note that we
are imposing a considerable structure on the model class, for example we have
ruled out the mono-resolution model class of the previous section. We are essen-
tially requiring that the higher resolution models are simply basis extensions of
the lower resolution models, hence standard approximation bases such as Taylor
series, Fourier series, wavelets, etc., are all of the appropriate form. Basis
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functions from any fKbgbb0 approximation class can be utilized, for if f~FFkgkb1 is
a fKbgbb0 approximation class, then so is fFmgmb1, but note that F

m is of much
higher dimension than ~FFm as it is the union of all the lower resolution models.
The important di¤erence between the requirement we are making in this section
and the conditions imposed in the previous section is that the models contain basis
functions corresponding to all resolutions, whereas the models of the previous sec-
tion are ‘‘mono-resolution’’. For simplicity, we assume that the components of the
model are all equal, i.e. fm

j ¼ fm
i for 1a i; ja p.

Firstly we treat the case of compact W. We define

Gm
j ¼ diagfo2

1Idim W1�dim W1
;o2

2Idim W2�dim W2
; . . . ;o2

mIdim Wm�dim Wm
g; ð82Þ

Gm ¼ diagfGm
1 ; . . . ;Gm

p g; ð83Þ

where foigib1 is the positive sequence defined by

oi ¼
jcij

supx AWk ~ff iðxÞk
: ð84Þ

Here fcigib1 is any sequence for which
Py

i¼1 jcij < þy. Without loss of generality
we may assume that

Py
i¼1 jcij ¼ 1.

Theorem 4.1. Let WHRn be a fixed compact set, and let fKbgbb0 be a smooth-

ness class. Suppose fFmgmb1 is a fKbgbb0 approximate model class. Consider the

system SDðY0Þ with functional uncertainty:

D j HKb XDðL2ðW;w2jÞ; d2jÞXDðLyðW;wyjÞ; dyjÞ; 1a ja p; ð85Þ

where d2j , o2j and oyj are known. Let

Xmð
Þ ¼ XmðGm; a;Fm;Wm
0 Þð
Þ; ð86Þ

where Gm and Fm are as in (81)–(83). If

1. 0 A Wm
0 HW1 HW, Emb 1,

2. be > 0 such that�
z A Rn j zTPza max

ffiffiffiffiffiffiffiffiffiffi
lðPÞ

q
ðg0 þ g1Þ; h0

� 	
þ

ffiffiffiffiffiffiffiffiffiffi
lðPÞ

q
g1

� �2
þ e

	
HW; ð87Þ

then there exists a > 0 and Mb 1 such that, for all mbM,

1. ðSDðY0Þ;XmðYref ÞÞ is well-posed, xðtÞ ! W0 as t ! y; Y ðtÞ A W for all tb 0,
2.

lim sup
m!y

PðSDðY0Þ;XmðYref ÞÞðQ;R;Wm
0 ;W1Þ < y: ð88Þ

Proof. Choose any M satisfying

Mb r b; h0
lðQÞ
2kbk

� �
ð89Þ
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and define

W �
a ¼ maxflðPÞðg0 þ g1Þ

2; h20g þ
Xp
j¼1

1

2aj

ðd2j þ qMÞ2

lðGMÞlðGMÞ
; ð90Þ

where
qM ¼ max

1a jap
sup
fj AD j

kdfjkL2ðW;w2jÞ a sM max
1a jap

kw2jkL1ðWÞ < y; ð91Þ

and sM > 0 is such that Mb rðb; sMÞ. It therefore follows by condition (87) that
there exists an adaption gain a > 0 such that

fz A Rn j zTPzaW �
a þ lðPÞg21gHW: ð92Þ

Let f A D, Y ref A Yref , y0 A Y0 and initially assume that x0 B W0. First we con-
sider well-posedness and convergence to W0. Let mbM. Let Vm be the Lyapunov
function of Theorem 2.1 corresponding to the mth model. Following the proof of
Theorem 2.1, it su‰ces to show that the level set defined by Vm

0 is contained in W.
From (92) it su‰ces to show that

Vm
0 aW �

a ; ð93Þ

where Vm
0 is the value of Vm at time zero.

Since the model Fm for m > M is simply a basis extension of the model FM , we
can define ym

f A W1 � 
 
 
 �Wm by ym
f ¼ ½yM

f j0�, where yM
f is a parameter-vector

that satisfies

kdM
f kCðWÞ ¼ k f 
 ðyM

f ÞTFMkCðWÞ a h0
lðQÞ
2kbk : ð94Þ

Since ðym
j ÞTðGm

j Þ
1ym
j ¼ ðyM

j ÞTðGM
j Þ
1yM

j , ðyM
j ÞTGMyM

j a ðd2j þ qMÞ2, we have

ðym
j 
 ŷym

j ð0ÞÞ
TðGm

j Þ
1ðym
j 
 ŷym

j ð0ÞÞa ðd2j þ qMÞ2

lðGM
j ÞlðGMÞ

; ð95Þ

and so Vm
0 aW �

a as required.
We now consider the state performance bound (to avoid an explosion of in-

dices, we omit the index denoting the dependency on the model-size unless the
dependency is crucial). We follow the derivation of [FSR2], which we repeat here
for completeness. By (43),

P 0 ¼def
ð
TW 0

xT ðtÞQxðtÞ dt ¼
ð
TW 0


 _VVt dtþ
ð
TW 0

xTbdðxÞ dt: ð96Þ

We consider the first term of the right-hand side. Since xðtÞ is continuous, we
can write TW 0

¼ 6
b AB Eb where Eb ¼ ðt
b ; tþb Þ are maximal disjointed connected

subsets of R, and define Bn ¼ fb A B jmðEbÞb 1=ng. By the definition of the dead-
zone: ð

6
b ABn

Eb


 _VVt dt ¼
X
b ABn

Vt

b

 Vtþ

b
aV0 
 h20 ; ð97Þ
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since the summation telescopes and Vt b h21 for all tb 0. Then applying the mono-
tone convergence theorem we obtainð

TW 0

_VVt dt ¼ lim
n!y

ð
6

b ABn
Eb


 _VVt dtaV0 
 h20 : ð98Þ

Then since

jxTbdðxÞja gkxk2 a g

lðQÞ x
TQx; ð99Þ

we have

P 0
a ðV0 
 h2Þ þ

ð
TW 0

xTbdðxÞ dta ðV0 
 h20Þ þ
g

lðQÞ

ð
TW 0

kxk2Q dt

a ðV0 
 h20Þ þ
g

lðQÞP
0: ð100Þ

Rearranging the terms yields

P 0
a

lðQÞ
lðQÞ 
 g

ðV0 
 h20Þa
lðQÞ

lðQÞ 
 g
ðW �

a 
 h20Þ; ð101Þ

so we are left with estimating the control e¤ort integral. The idea is to change
the integration over TW1

to an integration over ½h21 ;V0� as a function of Vt. We first
establish an inequality for u2j ðtÞ, 1a ja p, in terms of Vt:

u2j ðtÞ ¼ ð
ŷyT
j ðtÞf

m
j ðY ðtÞÞ 
 aT

j xj þ y
ðnÞ
ref j

Þ2

a ð
aT
j xj 
 yT

j f
m
j ðYðtÞÞ þ ðyj 
 ŷyjÞTfm

j ðYðtÞÞ þ y
ðnÞ
ref j

Þ2

a ð
aT
j xj 
 fjðY ðtÞÞ þ dfjðY ðtÞÞ þ ðyj 
 ŷyjÞTfm

j ðY ðtÞÞ þ y
ðnÞ
ref j

Þ2

a

 
kajk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xT
j Pjxj

lðPjÞ

s
þ dyjw


1
yjðkY ðtÞkÞ þ sM

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyj 
 ŷyjÞTðGm

j Þ
1ðyj 
 ŷyjÞ
q

kðGm
j Þ1=2fm

j ðYðtÞÞk þ g2

!2

a

 
kajk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xT
j Pjxj

lðPjÞ

s
þ dyjw


1
yj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y TPjY

lðPjÞ

s !
þ sM

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyj 
 ŷyjÞTðGm

j Þ
1ðyj 
 ŷyjÞ
q

þ g2

!2

a ~uu2j ðVðtÞÞ; ð102Þ

where the function ~uuj is defined by

~uujðvÞ ¼
kajkffiffiffiffiffiffiffiffiffiffiffi
lðPjÞ

p ffiffiffi
v

p
þ dyjw


1
yj

ffiffiffi
v

p
þ lðPjÞg1ffiffiffiffiffiffiffiffiffiffiffi
lðPjÞ

p
 !

þ sM þ
ffiffiffiffiffiffiffiffiffi
2ajv

p
þ g2; ð103Þ
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and where we have used the crucial inequality

kðGm
j Þ1=2fm

j ðxÞk ¼
Xm
k¼1

okk ~ffkðxÞka
Xm
k¼1

jckja 1; ð104Þ

which follows from the construction of Gm. The bound on the control e¤ort term
is now obtained by the substitution v ¼ Vt, which is valid, since by inequality (43)
and the dead-zone definition, V is decreasing on TW1

, henceð
TW1

uTRu dta lðRÞ
Xp
j¼1

ð
TW1

~uu2j ðVtÞ dt

¼ lðRÞ
Xp
j¼1

ð
v A vðTW1

Þ

~uu2j ðvÞ
_vv

dv

a
lðRÞ

h21ðlðQÞ 
 gÞ
Xp
j¼1

ðV0

h2
1

~uu2j ðvÞ dv

a
lðRÞ

h21ðlðQÞ 
 gÞ
Xp
j¼1

ðW �

h2
1

~uu2j ðvÞ dv; ð105Þ

where we have used the fundamental inequality (43). The result now follows by
observing that the case x0 A W0 follows by shifting time so that at time t ¼ 0,
x0 A qW0. 9

To apply the above result, it is necessary to have a priori knowledge of the un-
certainty level d2 in order to satisfy condition (87). We now relax the need for this
knowledge, by considering global results, i.e. by taking W ¼ Rn. We measure the
uncertainties in global weighted L2, Ly spaces.

As discussed in [FSR2], it is clear that in general we will require a countably
infinite-dimensional model to satisfy the approximation constraints. However, in
general infinite-dimensional models will not yield physically realisable controllers,
as we cannot update even a countable number of parameters at a time step. Thus
we restrict ourselves to a particular class of locally finite-dimensional models, the
so-called semi-global finite-dimensional (SFD) models. These are models whose
basis functions have compact support, and moreover for any compact set W, there
are only a finite number of basis functions whose supports intersect W [FSR2].7
Examples of such models include splines and compactly supported wavelets. Such
models yield controllers whose (finite) dimension varies according to the uncer-
tainty level, in the sense that only a finite number of adaptive estimates are non-
constant: hence the controller can be implemented.

Let f~FFmgmb1 be a sequence of a (countably infinite) SFD model. Defining the

7 The proof of global stability given in [FSR2] is however only valid if the model basis is orthor-

normal (orthonormal SFD models exist, e.g. Daubechies wavelets [D]). Note however that the con-

struction given next also establishes the required global result for general SFD models.
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basis function extension Fm as in (81), it is clear that Fm is also an SFD model.
We assume that fFmgmb1 is a fKbgbb0 approximate model class. A suitable con-
struction of a suitable Gm for the SFD model Fm is as follows.

As in the previous section, for simplicity, we assume the model components are
equal, i.e. ~ffm

j ¼ ~ffm
i ¼ ~ffm for 1ai; jap. Then we partition the infinite-dimensional

models ~ffm into a countable number of finite-dimensional parts:

~ffm ¼ ½ðfm
1 Þ

T jðfm
2 Þ

T j 
 
 
 �T ; dim fm
l < y; lb 1; ð106Þ

where the basis functions are ordered such that if Wm
l ¼ 6

1aial
supp fm

i , then

Wl HWlþ1; Wl X ðWknWlþ1Þ ¼ q; Ekb l þ 2; Elb 1: ð107Þ

Such a partition into finite-dimensional parts can always be achieved by a recur-
sive construction, for if

½ðfm
1 Þ

T jðfm
2 Þ

T j 
 
 
 jðfm
k Þ

T �T ð108Þ

satisfies (107), then there are at most a finite number of remaining basis functions
which: (a) are contained in ~ffm, (b) are not contained in ½ðfm

1 Þ
T jðfm

2 Þ
T j 
 
 
 jðfm

k Þ
T �T

and (c) have supports which intersect Wm
k . Choose a finite-dimensional fm

k to have
at least one of the basis functions satisfying both (a) and (b) and to contain all the
basis functions satisfying (c) (a finite number, since the model is SFD). Then

½ðfm
1 Þ

T jðfm
2 Þ

T j 
 
 
 jðfm
kþ1Þ

T �T ð109Þ

also satisfies (107), and such a recursive construction defines a suitable partition of
the whole of fm.

We let the corresponding parameter vectors be denoted by ~yym
j ; ym

l , etc., and

define Gram matrices Gm
jl corresponding to the basis functions ½ðfm

1 Þ
T j 
 
 
 jðfm

l Þ
T �T

and with respect to the space L2ðWm
l ;w2jÞ for mb 1, lb 1, 1a ja p.

Let Hm
j , 1a ja p, be the operators defined by

Hm
j ¼ diag

1

c 01lðGm
j2Þ

I
dim fm

1
�dim fm

1

;
1

c 02lðGm
j3Þ

I
dim fm

2
�dim fm

2

; . . .

( )
; ð110Þ

where ðc 01; c 02; . . .Þ is a sequence of positive numbers satisfying
Py

i¼1 c
0
i ¼ 1.

Now, let

Gm
j ¼ diagfo2

j1H
1
j ;o

2
j2H

2
j ; . . . ;o

2
jmH

m
j g; Gm ¼ ðGm

1 ; . . . ;Gm
p ÞT ; ð111Þ

where oi is chosen as follows. Let ðc1; c2; . . .Þ be a positive sequence satisfyingPy
m¼1 cm ¼ 1, and let

rjm ¼ sup
x

kðHm
j Þ1=2 ~ffmðxÞk: ð112Þ

Note that by the Kb-approximation property of the model, we must have rji > 0,
and since by the compact support and continuity of the basis functions we have
supxk ~ff iðxÞk < þy, hence we also have rji < þy. Now let

ojm ¼ cm

rjm
: ð113Þ
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The reason for defining Hm in the definition of Gm
j above instead of taking

Hm ¼ I (as was the case in Theorem 4.1) is that we need an appropriate scaling to
deal with the problem of the countable number of terms in the expressions:

ð~yym
j ÞTðGm

j Þ
1 ~yym
j ; 1a ja p: ð114Þ

Theorem 4.2. Let fKbgbb0 be a smoothness class, and suppose fFmgmb1 is defined

by (81), where f~FFmgmb1 is a fKbgbb0 SFD approximate model class. Consider the

system SDðY0Þ with functional uncertainty:

D j HKb XDðL2ðRn;w2jÞ; d2jÞXDðLyðRn;wyjÞ; dyjÞ; 1a ja p; ð115Þ

where o2j and oyj are known, but the uncertainty levels d2j ; dyj are unknown. Let

Xmð
Þ ¼ XðGm; a;Fm;Wm
0 Þð
Þ; ð116Þ

where Gm and Fm are as in (81) and (111). If Wm
0 HW1 HW, Emb 1, then there

exists Mb 1 such that for all mbM:

1. ðSDðY0Þ;XmðYref ÞÞ is well-posed and xðtÞ ! W0 as t ! y,

2. only a finite number of parameters are adapted,

3.
lim sup
m!y

PðSDðY0Þ;XmðYref ÞÞðQ;R;Wm
0 ;W1Þ < y: ð117Þ

Proof. The theorem follows analogously to that of Theorem 4.1, and the proof
technique of the global result in [FSR2], given the inequalities (119) and (120)
below. Inequality (119) is required to obtain a uniform bound on ðymÞTðGm

j Þ
1ym
(see inequality (95)) which leads to the uniform bound on Vm

0 (by W �
a ), whilst

inequality (120) is required to obtain a uniform bound on kðGm
j Þ1=2fm

j ðxÞk (which
forms part of the control e¤ort bound).

First we let qM be defined by (91) with W ¼ Rn. Choose M large, and then let
ym ¼ ½0jð~yyMÞT j0 
 
 
 �T be defined so that ðymÞTfm ¼ ð~yyMÞT ~ffM . Then

ðym
j Þ

TðGm
j Þ
1ym

j ¼ ðo2
jMÞ
1ð~yyM

j ÞT ðHM
j Þ
1 ~yyM

j ð118Þ
and

ð~yyM
j ÞTðHM

j Þ
1 ~yyM
j a

Xy
k¼1

c 0klðGM
jðkþ1ÞÞðyM

jk Þ
T
yM
jk

a
Xy
k¼1

c 0klðGM
jðkþ1ÞÞ

Xkþ1

l¼1

ðyM
jl Þ

TyM
jl

 !

a
Xy
k¼1

c 0k½ðyM
j1 Þ

T j 
 
 
 jðyM
jðkþ1ÞÞ

T �GM
jðkþ1Þ½ðyM

j1 Þ
T j 
 
 
 jðyM

jðkþ1ÞÞ
T �T

¼
Xy
k¼1

c 0kk½ðyM
j1 Þ

T j 
 
 
 jðyM
jðkþ1ÞÞ

T �½ðfM
1 ÞT j 
 
 
 jðfM

kþ1Þ
T �Tk2

L2ðWM
k
;w2 jÞ
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a
Xy
k¼1

c 0kkð~yy
M
j ÞT ~ffMk2

L2ðWM
k
;w2jÞ

a
Xy
k¼1

c 0kkðyjÞ
TfMk2

L2ðWM
k
;w2jÞ

a ðd2j þ qMÞ2: ð119Þ

Now we derive the bound analogous to (104) that was required in bounding the
control e¤ort term of the performance measure. By the definition of Gm

j , it follows
that

kðGm
j Þ1=2fm

j ðxÞka
Xm
k¼1

ojkkðHk
j Þ

1=2 ~ffkðxÞka
Xm
k¼1

ck a 1; ð120Þ

hence completing the proof. 9

5. Conclusions

We consider the closed-loop performance scaling question to be the fundamental
issue in the design and implementation of controllers based on function approx-
imators. We have proved in Section 3 that standard approximate adaptive control
designs lead to divergent closed-loop performance when the resolution of the ap-
proximator is increased in Scenario 1, i.e. the case where Wm

0 ! f0g. It remains
open to establish whether bad scaling can be proved to occur for a fixed W0, and
whether poor scaling can occur in the SISO case.

For a simple class of systems, namely a tracking problem for a chain of inte-
grators, we have exhibited both global and semi-global control designs (Section 4)
which do not lead to divergent performance in Scenarios 1–3, i.e. the performance
is uniformly bounded in cases where Wm

0 ! f0g and where Wm
0 ¼ W0 is fixed. Fur-

thermore, the proofs of the results give an explicit uniform performance bound.
These positive results can be generalised to wider classes of systems [KKK] with
backstepping controllers [FS].

The dynamics of the two designs are interesting. In the former case the divergent
performance can be roughly understood as follows. Because the model is mono-
resolution, a high adaption gain must be used to ensure a good transient tracking
performance. On the other hand, a uniformly high adaption gain leads to excessive
control e¤ort via increased overshoots. In the latter designs the e¤ective adaption
rates can be chosen to be lower for the basis functions corresponding to higher res-
olutions. In this manner we can ensure good transient tracking, whilst not leading
to high adaption gains which force excessive control e¤ort.

The results in this paper give a strong mathematical incentive for studying func-
tion approximator designs as opposed to their parametric counterparts. In a prob-
lem specified by a functional uncertainty, the nonlinearities of the system are not
highly structured: they are specified solely by a norm bound. In contrast, a problem
specified by a parametric uncertainty has a highly structured nonlinearity which
is specified by both the parameters and the basis functions which they multiply. On
the other hand, in the approximate adaptive case, the regularity of the basis func-
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tions themselves can be exploited. Hence, in the approximate adaptive scenario we
have a much better handle on the nonlinearity and, e.g. the ‘‘worst case’’ system,
and can give meaningful performance results for whole classes of systems. In the
parametric case we can only expect to give good performance results for classes of
systems which impose particular sets of assumptions on the allowable nonlinear-
ities: more probably by proceeding on a case by case basis. This simply reflects the
fact that less structured uncertainties are simpler to handle than more structured
uncertainties. Furthermore, the approximate adaptive theory has a rich asymptotic
theory (as m ! y), which by definition has no counterpart in the parametric case.

Acknowledgements. The authors thank the reviewers for their careful reading of
the manuscript and for their many constructive comments.

Appendix. Proofs of the Results of Section 3

Proposition 3.1. Consider the closed-loop system ðSf ðY0Þ;XmðYref ÞÞ defined by

Sections 3.2 and 3.3. Then

PðS f ðY0Þ;XmðYref ÞÞð0;R;W
m
0 ;W1ÞbO

ffiffiffiffiffiffi
am
j

m

r !
; 1a ja p: ð121Þ

Proof. Let f ¼ ð f1; f2; . . . ; fpÞT ¼ ð0; 0; . . . ; 0ÞT A D, nj ¼ 1, 1a jap (i.e. _xxj ¼ uj ,
1a ja pÞ, and consider the zero reference signal yref ¼ 0 A Yref . Fix m and 1a
ja p and consider the initial condition xð0Þ ¼ x0 defined by x0i ¼ 0, i0 j, x0j ¼
h=2. Applying the controller Xm, it is straightforward to observe that xi ¼ 0,

ŷyi ¼ 0, ui ¼ 0 for all tb 0, and for i0 j. Then

ŷyT
j f

m
j ðxÞ ¼ ŷyT

j f
m
j ð0; . . . ; 0; xj; 0; . . . ; 0Þ

¼
X
k

ŷyjkj
m
xðkÞj ðxjÞ

Y
l0 j

jm
xðkÞl ð0Þ

¼
X


maiam

jm
i ðxjÞ

X
k :xðkÞj¼i

ŷyjk
Y
l0 j

jm
xðkÞl ð0Þ

¼ ~yyT
j s

m
j ðxjÞ;

where we define
~yyji ¼

X
k :xðkÞj¼i

ŷyjk
Y
l0 j

jm
xðkÞl ð0Þ: ð122Þ

Rewriting the closed-loop system in terms of ~yyj, we only need consider the
ð1þ 2mþ 1Þ-dimensional system:

_xxj ¼ 
~yyT
j s

mðxjÞ 
 ajxj; xjð0Þ ¼ h=2;

_~yy~yyj ¼ am
j xjbjDð½
h0ðmÞ; h0ðmÞ�; xjÞsmðxjÞ; ~yyjð0Þ ¼ 0; ð123Þ

uj ¼ 
~yyT
j s

mðxjÞ 
 ajxj:
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Since R ¼ diagðr1; . . . ; rpÞ, we clearly haveð
ftb0 j jxjðtÞj>h1g

rju
2
j dtaPðSDðY0Þ;XmðYref ÞÞð0;R;W

m
0 ;W1Þ; ð124Þ

where the left-hand side is computed for the system (123).
Let t ¼ inffsb 0 j distfxðsÞ;W1g ¼ 0g. As t < y by Theorem 2.1, we can es-

tablish the following inequality for uj ¼ _xxj (x0j b h1):

kxjkL2½0; t�kujkL2½0; t� b

ð t
0

xjuj dt

����
���� ¼

ð t
0

xj _xxj dt

����
���� ¼ x2

j ð0Þ 
 h21 ; ð125Þ

by an application of the Cauchy-Schwartz inequality. Hence

ð
TW1

u2j dtb
x2
0 
 h21

kxjkL2½0; t�

 !2

: ð126Þ

Now we consider upper bounds on kxjkL2½0; t�.
By the first part of condition 4, Section 3.1, given any mb 1 we know that

ym ¼ ðh
ffiffiffiffiffiffiffip
am
j =11

ffiffiffiffi
m

p
Þ1 satisfies

yT
ms

mðxjÞb
ffiffiffiffiffiffi
am
j

m

r
xj; Exj A ½0; h1�: ð127Þ

Now consider the Lyapunov function:

Wm ¼
Qjx

2
j

2aj
þ ðym 
 ~yyÞTðym 
 ~yyÞ

2am
j

: ð128Þ

Using the di¤erential inequality

_xxj a ðym 
 ~yyÞTsmðxjÞ 
 aj þ
ffiffiffiffiffiffi
am
j

m

r !
xj ð129Þ

we can establish on the interval ½0; tÞ that

_WWm a
Qjxj

aj
ðym 
 ~yyÞTsmðxjÞ 


aj þ
ffiffiffiffiffiffiffiffiffiffiffiffip
am
j =m

aj
Qjx

2
j 
 ðym 
 ~yyÞTxjbjsmðxjÞ

a

aj þ

ffiffiffiffiffiffiffiffiffiffiffiffip
am
j =m

aj
Qjx

2
j ; ð130Þ

since bj ¼ Qj=aj (because of the Lyapunov equation AT
�jPj þ PjA�j ¼ 
Qj, Pj A R,

A�j ¼ 
aj , bj ¼ 2pj and bjaj ¼ Qj). Henceð t
0

x2
j dta

aj

Qjðaj þ
ffiffiffiffiffiffiffiffiffiffiffiffip
am
j =mÞ

ð t
0


 _WWm dt

¼ aj

Qjðaj þ
ffiffiffiffiffiffiffiffiffiffiffiffip
am
j =mÞ

ðWmð0Þ 
WmðtÞÞ

a
aj

Qjðaj þ
ffiffiffiffiffiffiffiffiffiffiffiffip
am
j =mÞ

Qjðx2
j ð0Þ 
 h21Þ
2aj

þ yT
mym

2am
j

 !
; ð131Þ
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and so we can establishð
TW1

u2j dtb
ðx2

j ð0Þ 
 h21Þ
2

kxk2
L2½0; t�

b
Qjðx2

j ð0Þ 
 h21Þ
2

aj
aj þ

ffiffiffiffiffiffi
am
j

m

r !
Qjðx2

j ð0Þ 
 h21Þ
2aj

þ yT
mym

2am
j

 !
1

¼ O

ffiffiffiffiffiffi
am
j

m

r !
: 9 ð132Þ

Proposition 3.4. Let mb 1, am > 0, k > 0, rm > 0 be arbitrary. Let ðY m; ŷymÞ
ð1a ja pÞ denote the solution of the closed-loop system ðSf m ;XmðY ref

m ÞÞ, where
f m ¼ ð f m

1 ; . . . ; f m
p ÞT , f m

j ¼ ðym
j ÞTfm

j , y
m
j ¼ k1. Assume further that the reference

signal Y ref
m is such that fm

j ðY ref
m Þ is persistently exciting. Then there exists em > 0

such that if hm
0 a em, then

lim sup
t!y

kŷym
j ðtÞ 
 ym

j ka rm; 1a ja p; Emb b: ð133Þ

Proof. Let mb b. Write the closed-loop system ðSf m ;XmÞ in the form

_xxj ¼ A�jxj þ Bjððyj 
 ŷyjÞTfjðY ref ÞÞ þ dxjðtÞ; 1a ja p; xð0Þ ¼ x0;

_̂
yŷyyj ¼ aj x

T
j bjfjðY ref Þ þ d

ŷyj
ðtÞ; ŷyjð0Þ ¼ 0; 1a ja p;

ð134Þ

where
dxjðtÞ ¼ Bjðyj 
 ŷyjðtÞÞTðfjðY ðtÞÞ 
 fjðY ref ðtÞÞÞ; ð135Þ

d
ŷyj
¼ axT

j bjðDðW0; xÞfjðY ðtÞÞ 
 fjðY ref ðtÞÞÞ: ð136Þ

We denote solutions of this system by ðxðt; h0Þ; ŷyðt; h0ÞÞ. We know from Theorem
2.1 that

sup
0<h0ae

lim sup
t!y

kxðt; h0Þk ! 0 as e ! 0; ð137Þ

and since Vðxðt; h0Þ; ŷyðt; h0ÞÞaWa we also have

sup
0<h0ae

sup
t!y

kxðt; h0Þk < y ð138Þ
and

sup
0<h0ae

sup
t!y

ky
 ŷyðt; h0Þk < y: ð139Þ

Hence it follows that

sup
0<h0ae

lim sup
t!y

kðdm
xj
; dm

ŷyj
Þk ! 0 as e ! 0: ð140Þ

The right-hand side of (134) with ðdm
xj
; dm

ŷyj
Þ ¼ 0 is locally Lipschitz, hence uni-

formly Lipschitz along the trajectories by (138), and also exponentially stable by
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(70). Hence by a simple modification of, e.g. Theorem 5.3.1 of [SB], we have
bKm > 0 such that

lim sup
t!y

kðxðt; h0Þ; y
 ŷyðt; h0ÞÞkaKm lim sup
t!y

kdðt; h0Þk: ð141Þ

Then it follows that bem > 0 such that

lim sup
t!y

kðxðt; h0Þ; y
 ŷyðt; h0ÞÞka r ð142Þ

from which the result follows. 9

Proposition 3.5. Let mb b. Then there exists a reference trajectory Y ref
m A Yref

and ~eem > 0 such that if Y : Rþ ! Rn is continuous and

lim sup
t!y

kYðtÞ 
 Y ref
m ðtÞka ~eem;

then fm
j ðYð
ÞÞ is persistently exciting for 1a ja p.

Proof. Fix j, t > 0. The upper bound in the persistently excitation condition is
easily established for any continuous signal Y and t > 0:ð tþt

t

ðcTfm
j ðYðtÞÞÞ2 dta t12kck2: ð143Þ

To establish the lower bound in the persistently excitation condition we argue as
follows.

By condition 3, Section 3.1, there are m 0 ¼ ð2mþ 1Þp linearly independent basis
functions of each model component fm

j over the domain W2. It easily follows
that there exist m 0 disjoint points Z1; . . . ;Zm 0 A W2 such that the matrix Hm ¼
ðfm

jk Zið ÞÞ1ak; iam 0 is invertible. For xi A Rn, 1a iam 0, define

Emðx1; . . . ; xm 0 Þ ¼ ðfjk Zi þ xið ÞÞ1ai;kam 0 ð144Þ

and observe that Emð0; 0; . . . ; 0Þ ¼ Hm and thus lðEmð0; . . . ; 0ÞTEmð0; . . . ; 0ÞÞ > 0.
We define

nðfm
j ; eÞ ¼ inf

kx1k;...;kxm 0 kae
lðEmðx1; . . . ; xm 0 ÞTEmðx1; . . . ; xm 0 ÞÞ: ð145Þ

Then there exists ~ee > 0 such that if 0a e < ~ee=2, then 0 < nðfm
j ; eÞ < y. This is a

simple consequence of the continuity of the basis functions, the continuous depen-
dence of the eigenvalues of a matrix with respect to its entries and the previous
observation that lðEmð0ÞTEmð0ÞÞ > 0.

Let t > 0 be large enough such that there exist a su‰ciently smooth periodic
signal yref A Yref (i.e. such that kY refka g1 and kyðnjÞref j

ka g2) with period t for
which the sets

I iðtÞ ¼ fs A ½t; tþ tÞ: kZi 
 Y ref ðsÞk < ~ee=2g ð146Þ

have positive measure (i.e. mðI iðtÞÞ > 0) for 1a iam 0.
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Choose any continuous signal Y such that lim sups!ykYðsÞ 
 Y ref ðsÞka e. We
show that for t large enoughð tþt

t

jcTfm
j ðY ðtÞÞj2 dtbw1kck2 ð147Þ

for some w1 > 0. Since lim sups!ykYðsÞ 
 Y ref ðsÞka e, there exists T > 0 such
that for s > T kY ðsÞ 
 Y ref ðsÞka ~ee=2. Let t > T . Therefore

0 < mðI iðtÞÞamðfs A ½t; tþ tÞ: kZi 
 YðsÞka ~eegÞ; 1a iam 0: ð148Þ

Since Z1; . . . ;Zm 0 are disjoint there exists a system of pairwise disjoint (measur-
able) sets IiðtÞJfs A ½t; tþ tÞ: kZi 
YðsÞka~eeg such that mðIiðtÞÞ> 0, 1a iam 0.
Thenð tþt

t

jcTfm
j ðYðtÞÞj2 dtb

Xm 0

i¼1

ð
IiðtÞ

jcTfm
j ðY ðtÞÞj2 dt; 1a ja p: ð149Þ

Let 1a iam 0. Applying the intermediate value theorem, we have that there
exist xi A Rn, kxi 
 Zika ~ee (YðtÞ ¼ xi for some t A IiðtÞ) such thatð

IiðtÞ
jcTfm

j ðYðtÞÞj2 dt ¼ jcTfm
j ðxiÞj

2
mðIiðtÞÞb t0jcTfm

j ðxiÞj
2; ð150Þ

where 0 < t0 ¼ inf tbT min1aiam 0 mðIiðtÞÞ.
By the definition of n,

jcTfm
j ðxiÞj

2

¼
Xm 0

k; l¼1

ckclf
m
jkðxiÞf

m
jl ðxiÞ

¼ cTEmðx1 
 Z1; . . . ; xm 0 
 Zm 0 ÞTEmðx1 
 Z1; . . . ; xm 0 
 Zm 0 Þc

b lðEmðx1 
 Z1; . . . ; xm 0 
 Zm 0 ÞTEmðx1 
 Z1; . . . ; xm 0 
 Zm 0 ÞÞkck2: ð151Þ

Since kxi 
 Zika ~ee it follows that jcTfm
j ðxiÞj

2
b kck2nðfm

j ; ~eemÞ. Thereforeð tþt

t

jcTfm
j ðYðtÞÞj2 dtb t0m

0nðfm
j ; ~eemÞkck

2: ð152Þ

This completes the proof. 9
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[FS] M. French and Cs. Szepesvári. Function approximator based control designs for strict feed-

back systems: LQ performance and scaling. Submitted for publication.
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