Abstract
In this paper is presented an hybrid algorithm for finding the absolute extreme point of a multimodal scalar function of many variables. The algorithm is suitable when the objective function is expensive to compute, the computation can be affected by noise and/or partial derivatives cannot be calculated. The method used is a genetic modification of a previous algorithm based on the Price’s method. All information about behavior of objective function collected on previous iterates are used to chose new evaluation points. The genetic part of the algorithm is very effective to escape from local attractors of the algorithm and assures convergence in probability to the global optimum. The proposed algorithm has been tested on a large set of multimodal test problems outperforming both the modified Price’s algorithm and classical genetic approach.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
1.Barone F, Di Fiore L, Milan L, Russo G (1993) The Astroph J 234: 237–251
2.Barone F, Maceroni C, Milano L, Russo G (1988) Aston Asrophis 197: 347–353
3.Barone F, Milano L, Russo G (1990) In: Active close binaries, Ibanoglu C (ed) (Kluwer, Dordrecht pp.161–188
4.Breiman L, Culter A (1993) Math program 58: 179–199
5.Brachetti P, De Felice Ciccoli M, Di Pillo G Lucidi S (1997) J global optim 10: 165–184
6.Chelouah R, Siarry P (2000) J Heuristics 6: 191–213
7.Corana A, Marchesi M, Martini C, Ridella S (1987) ACM Trans Math Software 13: 262–280
8.Dixon LCW, Szego GP (1975) Towards Global Optimization 1, Amsterdam
9.Dixon LCW, Szego GP (1978) Towards Global Optimization 2, Amsterdam
Glover F, Kelly JP, Laguna M (1995) Comput Ops Res 22: 111–134
Goldberg DE (1989) Genetic Algorithms in search, optimization and machine learning, (Addison Welsey, New York
Hanagandi V, Nicolaou M (1998) Comput Chem Eng 22: 1913–1925
Horst R, Pardalos PM (eds) (1995) Handbook of Global Optimization, Kluwer, Dordrecht
Kwong S, Cl Ng A, Man KF,
Lucidi S, Piccioni M (1989) J Optim Theory Appl 62: 255–277
http://www.imm.dtu.dk/-km/GlobOpt/testex/testproblems.htm
Mockus J (1989) Bayesian approach to global optimization, Kluwer, Dordrecht
Milano L, Barone F, Milano M (1997) Phys. Review D, 55: 4537–4554
Okamoto M, Nonaka T, Ochiai S, Tominaga D (1998) Appl Math Comput 9: 63–72
Pardalos PM, Migdalas A, Burkard RE (eds) (2002) Combinatorial and Global Optimization, World Scientific Pub. Co. Inc.
Janos D. Pinter (1995) Global Optimization in Action, Kluwer, Dordrecht
Price WL (1979) Comput J 20: 367–370
Price WL (1983) J Optimi Theory Appl 40: 333–348
Renders JM, Flasse SP (1996) IEEE Trans Syst Man Cybernet Part B, 25: 243–258
Shoen F (1991) J Global Optimization, 1: 207–228
Strongin RG, Sergeyev YaD (2000) Global optimization with non-convex constraints: Sequential and parallel algorithms, Kluwer, Dordrecht
Törns AA (1997) IEEE Trans Syst Man Cybernet 7:610
Wolfe MA (1978) Numerical Methods for Unconstrained Optimization, Van Nostrand Rehinold Company, NewYork
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bresco, M., Raiconi, G., Barone, F. et al. Genetic approach helps to speed classical Price algorithm for global optimization. Soft Comput 9, 525–535 (2005). https://doi.org/10.1007/s00500-004-0370-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-004-0370-y