Abstract
In this paper, we propose a population-based, four-step, real-parameter optimization algorithm-generator. The approach divides the task of reaching near the optimum solution into four independent plans of (i) selecting good solutions from a solution base, (ii) generating new solutions using the selected solutions, (iii) choosing inferior or spurious solutions for replacement, and (iv) updating the solution base with good new or old solutions. Interestingly, many classical and evolutionary optimization algorithms are found to be representable by this algorithm-generator. The paper also recommends an efficient optimization algorithm with the possibility of using a number of different recombination plans and parameter values. With a systematic parametric study, the paper finally recommends a real-parameter optimization algorithm which outperforms a number of existing classical and evolutionary algorithms. To extend this study, the proposed algorithm-generator can be utilized to develop new and more efficient population-based optimization algorithms. The treatment of population-based classical and evolutionary optimization algorithms identically through the proposed algorithm-generator is the main hall-mark of this paper and should enable researchers from both classical and evolutionary fields to understand each other’s methods better and interact in a more coherent manner.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Acknowledgments.
The author wishes to thank his students Dhiraj Joshi, Ashish Anand, Abhishek Porwal, and Amit Gautam for their programming expertise.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Deb, K. A population-based algorithm-generator for real-parameter optimization. Soft Comput 9, 236–253 (2005). https://doi.org/10.1007/s00500-004-0377-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-004-0377-4