Skip to main content

Advertisement

Log in

Evolutionary algorithms and de novo peptide design

  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

One of the goals of computational chemistry is the automated de novo design of bioactive molecules. Despite significant progress in computational approaches to ligand design and efficient evaluation of binding energy, novel procedures for ligand design are required. Evolutionary computation provides a new approach to this design issue. This paper presents an automated methodology for computer-aided peptide design based on evolutionary algorithms. It provides an automatic tool for peptide de novo design, based on protein surface patches defined by user. Regarding the restrictive constrains of this problem a special emphasis has been made on the design of the evolutionary algorithms implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ajay A, Walters WP, Murko MA (1998) Can we learn to distinguish between “ drug-like” and “ nondrug-like” molecules? J Med Chem 41(18):3314–3324

    Google Scholar 

  2. Apostolakis J, Caflish A (1999) Computational ligand design. Combi Chem High Throughput Screen 2:91–104

    Google Scholar 

  3. Back T (1997) Evolutionary algorithms in theory and practice. Oxford University Press, New York

  4. Baluja S, Caruana R (1995) Removing the genetics from standard genetic algorithm. In: Prieditis A, Russell S (eds) Proceedings of the international conference on machine learning. Morgan Kaufmann, San Franisco, pp 112–128

  5. Belda I, Llorà X, Martinell M, Tarragó T, Giralt E (2004) Computer-aided peptide evolution for virtual drug design. In: Deb K et al (ed) Genetic and evolutionary computation conference-GECCO 2004. Also availables as IlliGAL technical report, No. 2004015. Lecture Notes in Computer Science No. 3103, Springer, Berlin Heidelberg New York, pp 321–332

  6. Belda I, Llorà X, Martinell M, Tarragó T, Piqueras M-G, Nicolás E, Giralt E Evolutionary algorithms and de novo peptide design. J Comput Aided Mol Des (to submitted)

  7. Böhm HJ (1996) Computational tools for structure-based ligand design. Program Biophys Mol Biol 3:197–210

    Google Scholar 

  8. Böhm HJ (1998) Prediction of binding constants of protein ligands: a fast method for the priorization of hits obtained from de novo design or 3D database search programs. J Comput Aided Mol Des 12(4):309–323

    Google Scholar 

  9. Bohm HJ, Schneider G (ed) (2000) Virtual screening for bioactive molecules. Wiley, New York

  10. Bolten BM, DeGregorio T (2002) Trends in development cycles. Nat Drug Discover 1:551–555

    Google Scholar 

  11. Budin N, Majeux N, Tenette C, Caflisch A (2001) Structure-based ligand design by a build-up approach and genetic algorithm search in conformational space. J Comput Chem 22(16):1956–1970

    Google Scholar 

  12. Chiva C, Barthe P, Codina A, Gairí M, Molina F, Granier C, Pugniere M, Inui T, Nishi H, Nishiuchi Y, Kimura T, Sakakibara S, Albericio F, Giralt E (2003) Synthesis and NMR structure of p41icf, a protein inhibitor of human cathepsin L. J Am Chem Soc 125(6):1508–1517

    Google Scholar 

  13. Codina A, Gairí M, Tarragó T, Vigueras AR, Feliz M, Ludevid D, Giralt E (2002) 1h(n), 15n, 13co, 13ca, 13b assignement and secondary structure of a 20 kda a-l-fucosidade from pea using TROSY. J Biomol NMR 22:295–296

    Google Scholar 

  14. Corey DR (1999) Design and engineering of proteins as therapeutic agents. In Wu-Pong S, Rojanasakul (ed) Biopharmaceutical Drug Design Development. Humana Press, Inc.:187–203

  15. Davis L (1996) Handbook of genetic algorithms. International Thomson Computer Press

  16. Deb K, Agrawal S, Pratab A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer M, Deb K, Rudolph G, Yao X, Lutton E, Merelo JJ, Schwefel H-P (eds) Proceedings of the parallel problem solving from nature VI conference, Lecture Notes in Computer Science No. 1917, Springer, Berlin Heidelberg New York pp 849–858

  17. Douglet D, Thoreau E, Grassy G (2000) A genetic algorithm for the automated generation of small organic molecules: drug design using an evolutionary algorithm. J Comput Aided Mol Des 14:449–466

    Google Scholar 

  18. Gellert M (1981) DNA topoisomerases. Ann Rev Biochem 50:879–910

    Google Scholar 

  19. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading

  20. Goldberg DE, Richardson J (1987) Genetic algorithms with sharing for multimodal function optimisation. In: Grefenstette JJ (ed) Proceedings of the second international conference on genetic algorithms. Lawrence Erlbaum, pp 41–49

  21. Goldberg DE (2002) The design of innovation: lessons from and for competent genetic algorithms. Kluwer Dordrecht

  22. Haack T, González MJ, Sánchez Y, Giralt E (1997) D-Amino acids in protein de novo design. II. Protein-diastereomerism versus protein-enantiomerism. Lett Pep Sci 4:377–386

    Google Scholar 

  23. Holland JH (1975) Adaptation in natural and artificial systems. MIT, Cambridge

  24. Jones S, Thornton JM (1997) Analysis of protein-protein interaction sites using surface patches. J Mol Biol 272:121–132

    Google Scholar 

  25. Krasnogor N (2002) Studies on the theory and design space of memetic algorithms. PhD Thesis, University of the West England, Bristol

  26. Kubinyi H (1999) Chance favors the prepared mind. From serendipity to rational drug design. J Recept Signal Transduct Res 19:15–39

    Google Scholar 

  27. Larrañaga P, Lozano JA (2002) Estimation of distribution algorithms. GENA 2. Kluwer, Dordrecht

  28. Lebl M (2002) Combinatorial chemistry: the history and the basics. In Mei HY, Czarnik AW. Integrated Drug Discovery Technologies. Marcel Dekker:395–405

  29. Lengauer T, Lemmen C, Rarey M, Zimmermann M (2004) Novel technologies for virtual screening. Drug Discov Today 9(1):27–34

    Google Scholar 

  30. Loffet A (2002) Peptides as drugs: is there a market? J Peptide Sci 8:1–7

    Google Scholar 

  31. Malmsten M (2002) Surfactants and polymers in drug delivery. Marcel Dekker, New York

  32. Mandell A, Selz K, Shlesinger M (2002) Algorithmic design of peptides for binding and/or modulation of the funcions of receptors and/or other proteins

  33. Morris GM, Goodsell DS, Huey R, Hart WE, Halliday S, Belew R, Olson AJ (2003) Userguide Autodock 3.0.5

  34. Morris GM, Olson AJ, Goodsel DS (2000) Protein-ligand docking. Methods Princip Med Chem 8:31–48

    Google Scholar 

  35. Pegg S, Haresco J, Kuntz I (2001) A genetic algorithm for structure-based de novo design. J Comput Aided Mol Des 15:911–933

    Google Scholar 

  36. Pelikan M, Goldberg DE (1999) BOA: The bayesian optimization algorithm. Technical Report 99003, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign

  37. Pelikan M, Goldberg DE, Cantú-Paz E (1999) BOA: the bayesian optimization algorithm. In: Proceedings of the genetic and evolutionary computation conference-GECCO 1999. Morgan Kaufmann, San Francisco

  38. Pelikan M, Sastry K (2004) Fitness inheritance in the bayesian optimization algorithm. Technical Report 2004009, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign

  39. Sastry VH (1995) Strategies for drug design. Eastern Pharmacist 38:455

  40. Scheider G, Lee M, Stahl M, Schneider P (2000) De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks. J Comput Aided Mol Des 14:487–494

    Google Scholar 

  41. Seifert MHJ, Wolf K, Vitt D (2003) Virtual high-throughput in silico screening. Biosilico 1(4):143–149

    Google Scholar 

  42. Shoichet BK, McGovern SL, Wei B, Irwin JJ (2002) Lead discovery using molecular docking. Curr Opin Chem Biol 6(4):439–446

    Google Scholar 

  43. Smith GR, Sternberg MJE (2002) Prediction of protein-protein interactions by docking methods. Curr Opin Struct Biol 12:28–35

    Google Scholar 

  44. Thormann M, Pons M (2001) Massive docking of flexible ligands using environmental niches in parallelized genetic algorithms. J Comput Chem 22(16):1971–1982

    Google Scholar 

  45. Veselovsky AV, Ivanov AS (2003) Strategy of computer-aided drug design. Curr Drug Targets Infect Disord 3(1):33–40

    Google Scholar 

  46. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Google Scholar 

  47. Wang R, Gao Y, Lai L (2000) Ligbuilder: a multi-purpose pogram for structure-based drug design. J Mol Model 6:498–516

    Google Scholar 

  48. Yao X, Liu Y (1997) Fast evolution strategies. In: Peter J. Angeline, Robert G. Reynolds, John R. McDonnell, Russ Eberhart (eds) Evolutionary programming VI. Springer, Berlin Heidelberg New York, pp 151–161

  49. Yoshimoto T, Fischl M, Orlowski R, Walter R (1978) Post-proline cleaving enzyme and post-proline dipeptidyl aminopeptidase. Comparison of two peptidases with high specificity for proline residues. J Biol Chem 253(10):3708–3716

    Google Scholar 

  50. Zeng J (2000) Mini-review: computational structure-based design of inhibitors that target proteins surfaces. Comb Chem High Throughput Screen 3:355–362

    Google Scholar 

  51. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength pareto evolutionary algorithm. Technical Report 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland

  52. Zou X, Sun Y, Kuntz ID (1999) Inclusion of solvation in ligand binding free energy calculations using the generalized-born model. J Am Chem Soc 121(35):8033–8043

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Giralt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belda, I., Llorà, X. & Giralt, E. Evolutionary algorithms and de novo peptide design. Soft Comput 10, 295–304 (2006). https://doi.org/10.1007/s00500-005-0487-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-005-0487-7

Keywords

Navigation