Skip to main content
Log in

An economical cognitive approach for bi-objective optimization using bliss points, visualization, and interaction

  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

When an optimization problem encompasses multiple objectives, it is usually difficult to define a single optimal solution. The decision maker plays an important role when choosing the final single decision. Pareto-based evolutionary multiobjective optimization (EMO) methods are very informative for the decision making process since they provide the decision maker with a set of efficient solutions to choose from. Despite that the set of efficient solutions may not be the global efficient set, we show in this paper that the set can still be informative when used in an interactive session with the decision maker. We use a combination of EMO and single objective optimization methods to guide the decision maker in interactive sessions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbass HA (2002) An evolutionary artificial neural network approach for breast cancer diagnosis. Artif Intell Med 25(3):265–281

    Google Scholar 

  2. Abbass HA (2002) The self-adaptive pareto differential evolution algorithm. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC2002), vol 1, Piscataway, NJ, IEEE Press, pp 831–836

  3. Abbass HA (2003) Pareto neuro-ensemble. In: Proceedings of the 16th Australian joint conference on artificial intelligence (AI'03), Springer, Berlin Heidelberg New York

  4. Abbass HA (2003) Speeding up back-propagation using multiobjective evolutionary algorithms. Neural Comput 15(11):2705–2726

    Google Scholar 

  5. Abbass HA, Sarker R (2002) The Pareto differential evolution algorithm. Int J Artif Intell Tools 11(4):531–552

    Google Scholar 

  6. Abbass HA, Sarker RA, Newton CS (2001) PDE: A pareto-frontier differential evolution approach for multi-objective optimization problems. In: Proceedings of the IEEE congress on evolutionary computation (CEC2001), vol 2, Piscataway, NJ, IEEE Press, pp 971–978

  7. Anderson RK, Dror M (2001) An interactive graphic presentation for multiobjective linear programming. Appl Math Comput 123:229–248

    Google Scholar 

  8. Benayoun R, DeMontgolfier J, Tergny J, Laritchev O (1971) Linear programming with multiple objective functions: Step-method (stem). Math Program 1:366–375

    Google Scholar 

  9. Benson HP (1978) Existence of efficient solutions for vector optimization problems. J Optimiz Theory Appl 26(4):569–580

    Google Scholar 

  10. Buchanan JT (1997) A naïve approach for solving MCDM problems: the GUESS method. J Oper Res Soc 48(2):202–206

    Google Scholar 

  11. Chankong V, Haimes YY (1978) The interactive surrogate worth trade-off (ISWT) method for multiobjective decision-making. In: Multiple criteria problem solving, vol 155, Lecture notes in economics and mathematical systems, Springer, Berlin Heidelberg New York, pp 42–67

  12. Charnes A, Cooper WW (1961) Management models and industrial applications of linear programming. John Wiley, New York

  13. Choo EU, Atkins DR (1983) Proper efficiency in nonconvex multicriteria programming. Math Oper Res 8(3):467–470

    Google Scholar 

  14. Clarke F (1983) Optimization and nonsmooth analysis. John Wiley & Sons, New York

  15. Coello CA, Van Veldhuizen DA, Lamont GB (2002) Evolutionary algorithms for solving multi-objective problems. Kluwer Academic publishers, New York

  16. Deb K (2001) Multi-objective optimization using evolutionary algorithms. John Wiley & Sons, New York

  17. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Google Scholar 

  18. Downing CE, Ringuest JL (2002) Implementing and testing a complex interactive molp algorithm. Decis Support Syst 33:363–374

    Google Scholar 

  19. Erickson M, Mayer A, Horn J (2001) The niched pareto genetic algorithm 2 applied to the design of groundwater remediation systems. In: Proceedings of the 1st international conference on evolutionary multi-criterion optimization (EMO 2001), Lecture notes in computer science, 1993, Springer, Berlin Heidelberg New York, pp 681–695

  20. Fogel DB (1995) Evolutionary Computation: towards a new philosophy of machine intelligence. IEEE Press, New York, NY

  21. Geoffrion AM, Dyer JS, Feinberg A (1972) An interactive approach for multi–criterion optimization, with an application to the operation of an academic department. Manage Sci 19(4): 357–368

    Google Scholar 

  22. Goldberg DE (1989) Genetic algorithms: in search, optimisation and machine learning. Addison Wesely, USA

  23. Haimes YY, Hall WA, Freedman HB (1975) Multiobjective optimization in water resources systems, the surrogate worth trade-off method. Elsevier Scientific, London

  24. Hajela P, Lin CY (1992) Genetic search strategies in multicriterion optimal design. Struct Optimization 4:99–107

    Google Scholar 

  25. Hart WE (1994) Adaptive global optimization with local search. PhD thesis, University of California, San Diago

  26. Hillier FS, Lieberman GJ (1996) Introduction to operations research. McGraw-Hill, NY, USA

  27. Horn J, Nafpliotis N, Goldberg DE (1994) A niched pareto genetic algorithm for multiobjective optimization. In: Proceedings of the first IEEE conference on evolutionary computation, vol 1, IEEE World Congress on Computational Intelligence, Piscataway, New Jersey, pp 82–87

  28. Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans Evol Comput 7(2):204–223

    Google Scholar 

  29. Knowles J, Corne D (2000) Approximating the nondominated front using the pareto archived evolution strategy. Evol Comput 8(2):149–172

    Google Scholar 

  30. Korhonen P, Laakso J (1984) A visual interactive method for solving the multiple–criteria problem. In: Rauer M, Weirzbicki AP (eds) Interactive decision analysis, vol 229 Lecture notes in economics and mathematical systems, Springer, Berlin Heidelberg New York, pp 146–153

  31. Korhonen P, Yu GY (1997) A reference direction approach to multiple objective quadratic-linear programming. Eur J Oper Res 102:601–610

    Google Scholar 

  32. Menczer F, Degeratu M, Street WN (2000) Efficient and scalable pareto optimization by evolutionary local selection algorithms. Evol Comput 8(2):223–247

    Google Scholar 

  33. Miettinen KM (1998) Nonlinear multiobjective optimization. Kluwer Academic Publishers, Dordrecht, The Netherlands

  34. Narula SC, Kirilov L, Vassilev V (1994) Reference direction approach for solving multiple objective nonlinear programming problems. IEEE Trans Syst Man Cybern 24(5):804–806

    Google Scholar 

  35. Sakawa M (1982) Interactive multiobjective decision making by the sequential proxy optimization technique: SPOT. Eur J Oper Res 9(4):386–396

    Google Scholar 

  36. Sawaragi Y, Nakayama H, Tanino T (1985) Theory of multiobjective optimization, vol 176, Mathematics in science and engineering. Academic Press Inc, Harcourt Brace Jovanovich

  37. Schaffer JD (1985) Multiple objective optimization with vector evaluated genetic algorithms. Genetic algorithms and their applications: proceedings of the first international conference on genetic algorithms, pp 93–100

  38. Srinivas N, Deb K (1994) Multi-objective function optimization using non-dominated sorting genetic algorithm. Evol Comput 2(3):221–248

    Google Scholar 

  39. Steuer RE (1989) The Tchebycheff procedure of interactive multiple objective programming. In: Karpak B, Zionts S (eds) Multiple criteria decision making and risk analysis using microcomputers, Springer, Berlin Heidelberg New York, pp 235–249

  40. Tan KC, Lee TH, Khor EF (2001) Evolutionary algorithms for multi-objective optimization: performance assessments and comparisons. In: Proceedings of the 2001 congress on evolutionary computation (CEC 2001), IEEE press, pp 979–986

  41. Törn A, Žilinskas A (1987) Global optimization. In: Goos G, Hartmanis J (eds) Lecturer notes in computer science. Springer, Berlin Heidelberg New York

  42. Teo J, Abbass HA (2002) Multi-objectivity for brain-behavior evolution of a physically-embodied organism. In: Standish R, Bedau MA, Abbass HA (eds) Artificial Life VIII: The 8th International Conference on Artificial Life, Cambridge, MA, MIT Press, pp 312–318

  43. Thomas B (1996) Evolutionary algorithms in theory and practice. Oxford university press, USA

  44. Thomas B, David F, Zbigniew M (1997) Handbook of evolutionary computation. Institute of physics publishing and Oxford University

  45. Ulungu EL, Teghem J, Fortemps PH, Tuyttens D (1999) MOSA method: a tool for solving multiobjective combinatorial optimization problems. J multicriteria decision Anal 8:221–236

    Google Scholar 

  46. Wierzbicki A (1980) The use of reference objectives in multiobjective optimization. In: Fandel G, Gal T (eds) Multiple objective decision making, theory and application, Berlin Heidelberg New York, pp 468–486 Springer.

  47. Zeleny M (1973) Compromise programming. In: Cochrane JL, Zeleny M (eds) Multiple criteria decision making, Columbia, South Carolina, University of South Carolina Press

  48. Zeleny M (1998) Multiple criteria decision making: Eight concepts of optimality. Human Syst Manag 17:97–107

    Google Scholar 

  49. Zitzler E, deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195

    Google Scholar 

  50. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Trans Evol Comput 3(4):257–271

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussein A. Abbass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbass, H. An economical cognitive approach for bi-objective optimization using bliss points, visualization, and interaction. Soft Comput 10, 687–698 (2006). https://doi.org/10.1007/s00500-005-0530-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-005-0530-8

Keywords

Navigation