Abstract
In this work, simple modifications on the cost index of particular local-model fuzzy clustering algorithms are proposed in order to improve the readability of the resulting models. The final goal is simultaneously providing local linear models (reasonably close to the plant’s Jacobian) and clustering in the input space so that desirable characteristics (regarding final model accuracy, and convexity and smoothness of the cluster membership functions) are improved with respect to other proposals in literature. Some examples illustrate the proposed approach.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ahvenlampi T, Díez JL, Navarro JL (2003) New methods for validation of local models in fuzzy clustering identification. In: Proceedings of IFAC conference on intelligent control and signal processing, pp 9–12, Elsevier, Oxford
Angelov P, Xydeas C (2006) Fuzzy systems design: direct and indirect approaches. Soft comput 10:836–849
Babuska R (1998) Fuzzy modeling for control. Kluwer, Boston
Babuska R, Fantuzzi C, Verbruggen HB (1996) Improved inference for takagi-sugeno models. In: Proceedings IEEE conference on fuzzy systems, New Orleans, pp 653–664
Babuska R, van der Veen PJ, Kaymak U (2002) Improved covariance estimation for gustafson-kessel clustering. In: Proceedings IEEE conference on fuzzy systems, Honolulu
Baptistella LFB, Ollero A (1980) Fuzzy methodologies for interactive multicriteria optimmization. IEEE Trans Syst, Man Cybern 10:355–365
Bertsekas DP (1999) Nonlinear programming. Springer, London
Bezdek JC (1987) Pattern recognition with fuzzy objective function algorithms. Plenum, New York
Davé RN (1991) Characterization and detection of noise clustering. Pattern Recogn Lett 12:657–664
Davé RN, Krishnapuram R (1997) Robust clustering methods: a unified view. IEEE Trans Fuzzy Syst 5:270–293
Díez JL, Navarro JL, Sala A (2001) Identification for local model control with fuzzy clustering. In: Proceedings IFAC workshop on advanced fuzzy-neural control, pp 99–104, Elsevier, Oxford
Díez JL, Sala A, Navarro JL (2006) Target-shape possibilistic clustering applied to local-model identification. Eng Appl Artif Intell 19:201–208
Duda RO, Hart PE, Stork DG (2000) Pattern classification. Wiley, New York
Emami MR, Türksen IB, Goldenberg AA (1998) Development of a systematic methodology of fuzzy logic modeling. IEEE Trans Fuzzy Syst 6:346–366
Guillaume S (2001) Designing fuzzy inference systems from data: an interpretability-oriented review. IEEE Trans Fuzzy Syst 9:426–443
Gustafson EE, Kessel WC (1979) Fuzzy clustering with a fuzzy covariance matrix. In: Proceedings of IEEE CDC, San Diego, pp 761–766
Hathaway RJ, Bezdek JC (1993) Switching regression models and fuzzy clustering. IEEE Trans Fuzzy Syst 1:195–204
Johansen TA, Murray-Smith R (1997) The operating regime to nonlinear modelling and control. In: Murray-Smith R, Johansen TA (eds) Multiple model approaches to modelling and control. Taylor & Francis, London
Johansen TA, Shorten R, Murray-Smith R (2000) On the interpretation and identification of dynamic takagi-sugeno fuzzy models. IEEE Trans Fuzzy Syst 8:297–313
Johansson R (1993) System modeling and identification. Prentice-Hall, Information and System Sciences series, New Jersey
Krishnapuram R, Keller JM (1993) A possibilistic approach to clustering. IEEE Trans Fuzzy Syst 1:98–110
Lee S, Yen GE (2002) On the local interpretation of takagi-sugeno fuzzy models from a dynamical systems view. In: Proceedings of the American control conference, pp 519–524, Anchorage, Alaska
Ljung L (1999) System identification. Prentice-Hall, New Jersey
Murray-Smith R, Johansen TA (1997) Local learning in local model networks. In: Murray-Smith R, Johansen TA (eds) Multiple model approaches to modelling and control. Taylor & Francis, London
Nocedal J, Wright SJ (1999) Numerical optimization. Springer, London
Romero JA, Navarro JL, Bruno JM (2002) Estimación de parámetros del modelo de un biorreactor aplicando algoritmos genéticos. ITecnike Journal (in Spanish), Innovación e Investigación en la Ingeniería 2:31–34
Ryoke M, Nakamori Y (1996) Simultaneous analysis of classification and regression by adaptive fuzzy clustering. Jpn J Fuzzy Theory Syst 8:99–113
Sala A, Guerra TM, Babuska R (2005) Perspectives of fuzzy systems and control. Fuzzy Sets Syst 156:432–444
Sugeno M, Yasukawa T (1993) A fuzzy-logic-based approach to qualitative modeling. IEEE Trans Fuzzy Syst 1:7–31
Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15:116–132
Vemieuwe H, De Baets B, Verhoest NEC (2006) Comparison of clustering algorithms in the identification of takagi- sugeno models: a hydrological case study. Fuzzy Sets Syst 157: 2876–2896
Walter E, Pronzato L (1997) Identification of parametric models from experimental data. Springer, London
Wang L-X (1997) A course in fuzzy systems and control. Prentice-Hall, New Jersey
Yen J, Wang L, Gillespie CW (1998) Improving the interpretability of tsk fuzzy models by combining global learning and local learning. IEEE Trans Fuzzy Syst 6:530–537
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Díez, J.L., Navarro, J.L. & Sala, A. A fuzzy clustering algorithm enhancing local model interpretability. Soft Comput 11, 973–983 (2007). https://doi.org/10.1007/s00500-006-0146-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-006-0146-7