Abstract
This paper proposes a novel particle swarm optimization algorithm, rough particle swarm optimization algorithm (RPSOA), based on the notion of rough patterns that use rough values defined with upper and lower intervals that represent a range or set of values. In this paper, various operators and evaluation measures that can be used in RPSOA have been described and efficiently utilized in data mining applications, especially in automatic mining of numeric association rules which is a hard problem.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abbas HA, Teo J (2001) A true annealing approach to the marriage in honey-bees optimization algorithm. In: The inaugural workshop on artificial life (AL’01), Adelaide, Australia
Agrawal R, Imielinski T, Swami AN (1993a) Mining association rules between sets of items in large databases. In: Proceedings of ACM SIGMOD, Washington, DC, pp 207–216
Agrawal R, Imielinski T and Swami A (1993b). Database mining: a performance perspective. IEEE Trans Knowl Data Eng 5(6): 914–925
Alatas B and Arslan A (2004). Mining of fuzzy association rules with genetic algorithms (in Turkish), Gazi University. J Polytech 7(4): 269–276
Alatas B and Arslan A (2005). A novel approach based on genetic algorithm and fuzzy logic for mining of association rules (in Turkish), Firat University. J Sci Eng 17(1): 42–51
Alatas B and Akin E (2006). An efficient genetic algorithm for automated mining of both positive and negative quantitative association rules. Soft Comput 10(3): 230–237
Alatas B, Akin E, Karci A (2007) MODENAR: multi-objective differential evolution algorithm for mining numeric association rules. Appl Soft Comput. doi:10.1016/j.asoc.2007.05.003
Aumann Y and Lindell Y (2003). A statistical theory for quantitative association rules. J Intell Inf Syst 20(3): 255–283
Baluja S (1994) Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning. Technical report CMUCS-94–163, Carnegie Mellon University, Pittsburgh
Birbil S and Fang S (2003). An electromagnetism-like mechanism for global optimization. J Glob Optim 25(3): 263–282
David LO, Yanhong L (2007) Mining fuzzy weighted association rules. In: 40th Annual Hawaii international conference on system sciences HICSS-2007, pp 53–62
De Jong KA (2006) Evolutionary computation: a unified approach. Bradford Book, Cambridge, 272 p
Dorigo M, Di Caro G (1999) The ant colony optimization meta- heuristic. In: Corne D, Dorigo M, Glover F (eds) New methods in optimisation. McGraw-Hill, New York
Frank E, Witten IH (1998) Generating accurate rule sets without global optimization. In: Fifteenth international conference on machine learning, pp~144–151
Fukuda T, Yasuhiko M, Sinichi M, Tokuyama T (1996a) Mining optimized association rules for numeric attributes. In: Proceedings of ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems. ACM Press, New York, pp 182–191
Fukuda T, Morimoto Y, Morishita S, Tokuyama T (1996b) Data mining using two-dimensional optimized association rules: scheme, algorithms, and visualization. In: Proceedings of ACM SIGMOD international conference on management of data. ACM Press, New York, pp 13–23
Gaines BR and Compton P (1995). Induction of ripple-down rules applied to modeling large databases. J Intell Inf Syst 5(3): 211–228
Glover F, Laguna M, Martí R (2003) Scatter Search. In: Ghosh A, Tsutsui S (eds) Advances in evolutionary computation: theory and applications. Springer, New York, pp 519–537
Guvenir HA, Uysal I (2000) Bilkent University Function Approximation Repository. http://funapp.cs.bilkent.edu.tr
Holte RC (1993). Very simple classification rules perform well on most commonly used datasets. Mach Learn 11: 63–91
Karci A, Alatas B (2006) Thinking capability of saplings growing up algorithm, IDEAL 2006. In: Lecture notes in computer science, vol~4224. Springer, Heidelberg, pp 386–393
Kaya M and Alhajj R (2005). Genetic algorithm based framework for mining fuzzy association rules. Fuzzy Sets Syst 152(3): 587–601
Ke K, Cheng J, Ng W (2006) MIC framework: an information-theoretic approach to quantitative association rule mining, ICDE ’06, pp 112–114
Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE conference on neural networks, Perth, Australia, pp 1942–1948
Lingras P (1996) Rough neural networks. In: International conference on information processing and management of uncertainty, Granada, Spain, pp 1445–1450
Lent B, Swami A, Widom J (1997) Clustering association rules. In: Proceedings of IEEE international conference on data engineering, pp 220–231
Lingras P and Cedric D (2001). Applications of rough genetic algorithms. Comput Intell Int J 3(17): 435–445
Lingras P, Davies C (1999) Rough genetic algorithms. In: Proceedings of the 7th international workshop on new directions in rough sets, data mining, and granular-soft computing RSFDGrC 1999. Lecture notes in computer science, vol~1711, pp 38–46
Lingras P and Davies C (2001). Application of rough genetic algorithms. Comput Intell 17(2): 435–445
Mata J, Alvarez JL, Riquelme JC (2002) Discovering numeric association rules via evolutionary algorithm. In: Sixth Pacific–Asia conference on knowledge discovery and data mining PAKDD-02 (LNAI), Taiwan 2336, pp 40–51
Miller RJ, Yang Y (1997) Association rules over interval data. In: Proceedings of ACM SIGMOD international conference on management of data, vol 29, pp 452–461
Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech Concurrent Computation Program, C3P Report 826
Rahimi-Vahed AR, Mirghorbani SM, Rabbani M (2007) A new particle swarm algorithm for a multi-objective mixed-model assembly line sequencing problem. Soft Comput 11(10):997–1012
Reynolds RG, Michalewicz Z, Cavaretta M (1995) Using cultural algorithms for constraint handling in GENOCOP. In: John R, McDonnell et al. (eds) Proceedings of the fourth annual conference on evolutionary programming. MIT Press, Cambridge, pp 289–305
Salleb-Aouissi A, Vrain C, Nortet C (2007) QuantMiner: a genetic algorithm for mining quantitative association rules, IJCAI-07, pp 1035–1040
Senthil MA, Rao MVC, Chandramohan A (2005) Competitive approaches to PSO algorithms via new acceleration co-efficient variant with mutation operators. In: Proceedings of the fifth international conference on computational intelligence and multimedia applications (ICCIMA’05). IEEE Computer Society Press, Washington, pp 225–230
Shi Y, Eberhart RC (1998a) A modified particle swarm optimizer. In: Proceedings of the IEEE international conference on computational intelligence, pp 69–73
Shi Y, Eberhart RC (1998b) Parameter selection in particle swarm optimization. In: Evolutionary programming VII. Lecture Notes in Computer Science, vol~1447. Springer, Heidelberg, pp 591–600
Srikant R, Agrawal R (1996) Mining quantitative association rules in large relational tables. In: Proceedings of ACM SIGMOD, pp 1–12
Storn R and Price K (1997). Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11: 341–359
Vannucci M, Colla V (2004) Meaningful disretization of continuous features for association rules mining by means of a SOM. In: ESANN2004 European symposium on artificial neural networks, Belgium, pp 489–494
Yoda K, Fukuda T, Morimoto Y, Morishita S, Tokuyama T (1997) Computing optimized rectilinear regions for association rules. In: Proceedings of 3rd international conference on knowledge discovery and data mining. AAAI Press, New York, pp 96–103
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Alatas, B., Akin, E. Rough particle swarm optimization and its applications in data mining. Soft Comput 12, 1205–1218 (2008). https://doi.org/10.1007/s00500-008-0284-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-008-0284-1