Skip to main content

Advertisement

Log in

A data embedding scheme for color images based on genetic algorithm and absolute moment block truncation coding

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Recently, embedding a large amount of secret data into gray-level and color images with low distortion has become an important research issue in steganography. In this paper, we propose a data embedding scheme by using a well-known genetic algorithm, block truncation code and modification direction techniques to embed secret data into compression codes of color images to expand the variety of cover media. In the scheme, the common bitmap generation procedure of GA-AMBTC has been modified to speed up the hiding procedure. Two embedding strategies are proposed to hide secret data into the common bitmap and the quantization values in each block of the cover image. Experimental results confirm that the proposed scheme can provide high data capacity with acceptable image quality of the stego-images. Moreover, the compression ratio of the scheme is exactly the same as that of GA-AMBTC so that attackers cannot detect any trace of hidden data from the size of the modified compressed result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bender W, Gruhl D, Morimoto N, Lu A (1996) Techniques for data hiding. IBM Syst J 35(3&4): 313–336

    Article  Google Scholar 

  • Chan CK, Cheng LM (2004) Hiding data in images by simple LSB substitution. Pattern Recognit 37(3): 469–474

    Article  MATH  Google Scholar 

  • Chang CC, Hsiao JY, Chan CS (2003) Finding optimal least- significant-bit substitution in image hiding by dynamic programming strategy. Pattern Recognit 36(7): 1583–1593

    Article  Google Scholar 

  • Chang CC, Hu YC (1999) Hybrid image compression methods based on vector quantization and block truncation coding. Opt Eng 38(4): 591–598

    Article  Google Scholar 

  • Chang CC, Lin CY, Wang YZ (2006) New image steganographic methods using run-length approach. Inform Sci 176(22): 3393–3408

    Article  MathSciNet  Google Scholar 

  • Chang CC, Tai WL, Lin CC (2006) A reversible data hiding scheme based on side match vector quantization. IEEE Trans Circuits Syst Video Technol 16(10): 1301–1308

    Article  Google Scholar 

  • Chen B, Latifi S, Kanai J (1999) Edge enhancement of remote image data in the DCT domain. Image Vis Comput 17(12): 913–921

    Article  Google Scholar 

  • Chen WJ, Tai SC (1999) A genetic algorithm approach to multilevel absolute moment block truncation coding. IEICE Trans Fundam Electron Commun Comput Sci E82-A(8): 1456–1462

    Google Scholar 

  • Chuang JC, Chang CC (2006) Using a simple and fast image compression algorithm to hide secret information. Int J Comput Appl 28: 1735–1743

    Google Scholar 

  • Cox IJ, Kilian J, Leigiton T, Shamoon T (1997) Secure spread spectrum watermarking for multimedia. IEEE Trans Image Process 6(12): 1673–1687

    Article  Google Scholar 

  • Du WC, Hsu WJ (2003) Adaptive data hiding based on VQ compressed images. IEE Proc Vis Image Signal Process 150(4): 233–238

    Article  Google Scholar 

  • Hsu CT, Wu JL (1999) Hidden digital watermarks in images. IEEE Trans Image Process 8(1): 58–68

    Article  Google Scholar 

  • Hu YC, Chang CC (1999) Quadtree-segmented image coding schemes using vector quantization and block truncation coding. Opt Eng 39(2): 464–471

    Article  Google Scholar 

  • In J, Hsiarani S, Kossentini F (1999) On RD optimized progressive image coding using JPEG. IEEE Trans Image Process 8(11): 1630–1638

    Article  Google Scholar 

  • Kamstra LH, Henk JAM (2005) Reversible data embedding into images using Wavelet t-techniques and sorting. IEEE Trans Image Process 14(12): 2082–2090

    Article  MathSciNet  Google Scholar 

  • Kim T (1992) Side match and overlap match vector quantizers for images. IEEE Trans Image Process 1(2): 170–185

    Article  Google Scholar 

  • Konstantinides K, Bhaskaran V, Beretta G (1999) Image sharpening in the JPEG domain. IEEE Trans Image Process 8(6): 874–878

    Article  Google Scholar 

  • Lee YK, Chen LH (2000) High capacity image steganographic model. IEE Proc Vis Image Signal Process 147(3): 288–294

    Article  MathSciNet  Google Scholar 

  • Lin SD, Shie SC (2000) Side-match finite-state vector quantization with adaptive block classification for image compression. IEICE Trans Inform Syst E83-D(8): 1671–1678

    Google Scholar 

  • Lin YC, Tai SC (1998) A fast linde-buzo-gray algorithm in image vector quantization. IEEE Trans Circuits Syst II: Analog Digit Signal Process 45(3): 432–435

    Article  Google Scholar 

  • Lu CS, Huang SK, Sze CJ, Liao HYM (2000) A new watermarking technique for multimedia protection. In: Ling G, Jan L, Kung SY (eds) Multimedia image and video processing, Chap. 18. CRC Press, Boca Raton, pp 507–530

    Google Scholar 

  • Lu ZM, Sun SH (2000) Digital image watermarking technique based on vector quantization. Electron Lett 36(4): 303–305

    Article  Google Scholar 

  • Lin YC, Wang CC (1999) Digital images watermarking by vector quantization. In: Proceedings of 9th National Computer Symposium, Taichung, Taiwan, pp 76–87

  • Munteanu A, Cornelis J, Auwera GVD, Cristea P (1999) Wavelet image compression—the quadtree coding approach. IEEE Trans Technol Biomed 3(3): 176–185

    Article  Google Scholar 

  • Nasrabadi NM, King RA (1988) Image coding using vector quantization: a review. IEEE Trans Commun 36(8): 957–971

    Article  Google Scholar 

  • Pai YT, Ruan SJ (2006) Low power block-based watermarking algorithm. IEICE Trans Inform Syst E89-D(4): 1507–1514

    Article  Google Scholar 

  • Pan JS, Huang HC, Jain LC (2004) Intelligent watermarking techniques. World Scientific Publishing Company, Singapore

    MATH  Google Scholar 

  • Pfitzman B (1996) Information hiding terminology, Information Hiding: First International Workshop. Springer Lecture Notes in Computer Science, Cambridge, UK, vol 1174, pp 347–350

  • Rivest R, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-key cryptosystems. Commun ACM 21(2): 120–126

    Article  MATH  MathSciNet  Google Scholar 

  • Shie SC, Lin SD, Fang CM (2006) Adaptive data hiding based on SMVQ prediction. IEICE Trans Inform Syst E89-D(1): 358–362

    Article  Google Scholar 

  • Shieh CS, Huang HC, Wang FH, Pan JS (2004) Genetic watermarking based on transform domain techniques. Pattern Recognit 37(3): 555–565

    Article  Google Scholar 

  • Tai SC, Chen WJ, Cheng PJ (1998) Genetic algorithm for single bit-map AMBTC coding of color images. Opt Eng 37(9): 2483–2490

    Article  Google Scholar 

  • Walker JS (1996) Fast Fourier transforms, 2nd edn. CRC Press, Boca Raton, FL

    MATH  Google Scholar 

  • Wang RZ, Lin CF, Lin JC (2001) Image hiding by optimal LSB substitution and genetic algorithm. Pattern Recognit 34(3): 671–683

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang XP, Wang SZ (2006) Efficient steganographic embedding by exploiting modification direction. IEEE Commun Lett 10(11): 1–3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Chen Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, CC., Chen, YH. & Lin, CC. A data embedding scheme for color images based on genetic algorithm and absolute moment block truncation coding. Soft Comput 13, 321–331 (2009). https://doi.org/10.1007/s00500-008-0332-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-008-0332-x

Keywords

Navigation