Skip to main content
Log in

Quasi-arithmetic means and ratios of an interval induced from weighted aggregation operations

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper we deal with weighted quasi-arithmetic means of an interval using utility functions in decision making. The mean values are discussed from the viewpoint of weighted aggregation operators, and they are given as weighted aggregated values of each point in the interval. The properties of the weighted quasi-arithmetic mean and its translation invariance are investigated. For the application in economics, we demonstrate the decision maker’s attitude based on his utility by the weighted quasi-arithmetic mean and the aggregated mean ratio. Several examples of the weighted quasi-arithmetic mean and the aggregated mean ratio for various typical utility functions are shown to understand our motivation and for the applications in decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aczél J (1948) On weighted mean values. Bull Am Math Soc 54:392–400

    Article  MATH  Google Scholar 

  • Arrow KJ (1971) Essays in the theory of risk-bearing. Markham, Chicago

    Google Scholar 

  • Calvo T, Pradera A (2004) Double weighted aggregation operators. Fuzzy Sets Syst 142:15–33

    Article  MATH  MathSciNet  Google Scholar 

  • Calvo T, Kolesárová A, Komorníková M, Mesiar R (2002) Aggregation operators: basic concepts, issues and properties. In: Calvo T, Gmayor, Mesiar M (eds) Aggregation operators: new trends and applications. Physica-Verlag, Springer, pp 3–104

  • Dujmović JJ (1974) Weighted conjunctive and disjunctive means and their application in system evaluation. Univ Beograd Publ Elektotech Fak Ser Mat Fiz 483:147–158

    Google Scholar 

  • Dujmović JJ, Larsen HL (2007) Generalized conjunction/disjunction. Int J Approx Reason 46:423–446

    Article  Google Scholar 

  • Dujmović JJ, Nagashima H (2006) LSP method and its use for evaluation of Java IDEs. Int J Approx Reason 41:3–22

    Article  MATH  Google Scholar 

  • Fishburn PC (1970) Utility theory for decision making. Wiley, New York

    MATH  Google Scholar 

  • Fodor J, Roubens M (1994) Fuzzy preference modelling and multi-criteria decision support. Kluwer, Dordrecht

    Google Scholar 

  • Gollier G (2001) The economics of risk and time. MIT Publishers, Cambridge

    MATH  Google Scholar 

  • Gollier G, Eeckhoudt L, Schkesinger H (2005) Economic and financial decisions under risk. Princeton University Press, New Jersy

    Google Scholar 

  • Kolesárová A (2001) Limit properties of quasi-arithmetic means. Fuzzy Sets Syst 124:65–71

    Article  MATH  Google Scholar 

  • Kolesárová A, Mordelová J, Muel E (2004) Kernel weighted aggregation operators and their marginals. Fuzzy Sets Syst 142:35–50

    Article  MATH  Google Scholar 

  • Kolmogoroff AN (1930) Sur la notion de la moyenne. Acad Naz Lincei Mem Cl Sci Fis Mat Natur Sez 12:388–391

    Google Scholar 

  • Lázaro J, Rückschlossová T, Calvo T (2004) Shift invariant binary weighted aggregation operators. Fuzzy Sets Syst 142:51–62

    Article  MATH  Google Scholar 

  • Mesiar R, Rückschlossová T (2004) Characterization of invariant aggregation operators. Fuzzy Sets Syst 142:63–73

    Article  MATH  Google Scholar 

  • Nagumo N (1930) Über eine Klasse der Mittelwerte. Jpn J Math 6:71–79

    Google Scholar 

  • Pratt JW (1964) Risk aversion in the small and the large. Econometrica 32:122–136

    Article  MATH  Google Scholar 

  • Torra V, Godo L (2002) Continuous WOWA operators with application to defuzzification. In: Calvo T, Mayor G, Mesiar R (eds) Aggregation operators: new trends and applications, Physica-Verlag, Springer, pp 159–176

  • Yager RR (2004) OWA aggregation over a continuous interval argument with application to decision making. IEEE Trans Syst Man Cybern B Cybern 34:1952–1963

    Article  Google Scholar 

  • Yoshida Y (2003a) The valuation of European options in uncertain environment. Eur J Oper Res 145:221–229

    Article  MATH  Google Scholar 

  • Yoshida Y (2003b) A discrete-time model of American put option in an uncertain environment. Eur J Oper Res 151:153–166

    Article  MATH  Google Scholar 

  • Yoshida Y (2008) Aggregated mean ratios of an interval induced from aggregation operations. In: Torra V, Narukawa Y (eds) Modeling decisions for artificial intelligence—MDAI2008. Lecture notes in artificial intelligence, vol 5285. Springer, Berlin, pp 26–37

Download references

Acknowledgments

The author is grateful to referees for their valuable comments and suggestions for improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Yoshida.

Appendix

Appendix

In this section, we give the proofs of the theorems, the propositions and the lemmas in Sects. 35.

Proof of Lemma 3.1

Let \([a,b] \in {\mathcal{C}}(D)\) satisfying \(a< b.\) (M.i) Since \(f\) and \(f^{-1}\) are strictly increasing, we have

$$ \begin{aligned} M^{f}([a,b]) & = f^{-1} \left(\left. \intop_{a}^{b} f(x) w(x){\rm d}x \right/ \intop\limits_{a}^{b} w(x){\rm d}x \right)\\ & \le f^{-1} \left( \left. \intop\limits_{a}^{b} f(b) w(x){\rm d}x \right/ \intop\limits_{a}^{b} w(x){\rm d}x \right)\\ & = f^{-1} (f(b))=b. \end{aligned} $$

Thus we get \(M^{f}([a,b]) \le b.\) In the same way, we also have \(M^{f}([a,b]) \ge a.\) Therefore, we obtain \(a \le M^{f}([a,b])\le b.\) This inequality also implies that \( M^{f}([a,a]) = a\) for \(a \in D\) together with the definition (6). (M.ii) Put a function

$$ F(t)=\left. \intop_{a}^{t} f(x) w(x){\rm d}x \right/ \intop_{a}^{t} w(x){\rm d}x $$

for \(t > a.\) Then we have

$$ \begin{aligned} F^{\prime}(t)& =\frac{f(t)w(t) \int_{a}^{t} w(x){\rm d}x - w(t) \int_{a}^{t} f(x) w(x){\rm d}x}{\left( \int_{a}^{t} w(x){\rm d}x \right)^2}\\ &=\frac{w(t) \int_{a}^{t} (f(t) - f(x)) w(x){\rm d}x}{\left( \int_{a}^{t} w(x){\rm d}x \right)^2} > 0 \end{aligned} $$

since f is strictly increasing on D and \(w>0\) on D. Thus the map \(t \in (a, \infty) \cap D \, \mapsto \, F(t)\) is strictly increasing. We also put a function

$$ G(t)=\left. \intop_{t}^{b} f(x) w(x){\rm d}x \right/ \intop_{t}^{b} w(x){\rm d}x$$

for \(t < b.\) Then we have

$$ \begin{aligned} G^{\prime}(t)&= \frac{- f(t) w(t) \int_{t}^{b} w(x){\rm d}x + w(t)\int_{t}^{b} f(x) w(x){\rm d}x}{\left( \int_{t}^{b} w(x){\rm d}x \right)^2}\\ &=\frac{w(t) \int_{t}^{b} (f(x) - f(t)) w(x){\rm d}x}{\left( \int_{t}^{b} w(x){\rm d}x \right)^2} >0 \end{aligned} $$

since f is strictly increasing on D and \(w>0\) on D. Thus the map \(t \in (-\infty, b) \cap D \, \mapsto \, G(t)\) is also strictly increasing. Let \([a,b], [c,d] \in {\mathcal{C}}(D)\) satisfying \([a,b] \preceq [c,d].\) From the above results and the definition (6), we have \( f(M^{f}([a,b])) \le f(M^{f}([a,d])) \le f(M^{f}([c,d])). \) Therefore, we get \(M^{f}([a,b]) \le M^{f}([c,d])\) since \(f^{-1}\) is strictly increasing. (M.iii) The continuity is trivial from the definition (6). Therefore, the proof is completed.\(\hfill\square\)

Proof of Proposition 4.1

  1. (i)

    Let r be a positive number and let \([a,b] \subset [0,\infty).\) Then we have

    $$ \begin{aligned} r \cdot M^{f}([a,b])&=r \cdot \left(\left. \int\limits_{a}^{b} x^{\gamma} w(x){\rm d}x \right/ \int\limits_{a}^{b} w(x){\rm d}x \right)^{1/\gamma}\\ &=\left(\left. \int\limits_{a}^{b} (rx)^{\gamma} w(x){\rm d}x \right/ \int\limits_{a}^{b} w(x){\rm d}x \right)^{1/\gamma}\\ &=\left(\left. \int\limits_{ra}^{rb} x^{\gamma} w(x/r){\rm d}x \right/ \int\limits_{ra}^{rb} w(x/r){\rm d}x \right)^{1/\gamma}\\ &=\left(\left. \int\limits_{ra}^{rb} x^{\gamma} w(x){\rm d}x \right/ \int\limits_{ra}^{rb} w(x){\rm d}x \right)^{1/\gamma}\\ &=M^{f}([ra,rb]). \end{aligned} $$
  2. (ii)

    Let r be a positive number and let \([a,b] \subset (0,\infty).\) Then we have

    $$ \begin{aligned} r \cdot M^f([a,b]) & =\exp \left(\frac{1}{\gamma} \cdot \left. \int\limits_{a}^{b} \gamma \log x \cdot w(x){\rm d}x \right/ \int\limits_{a}^{b} w(x){\rm d}x + \log r \right)\\ &= \exp \left(\frac{1}{\gamma} \cdot \left. \int\limits_{a}^{b} \gamma \log (rx) \cdot w(x){\rm d}x \right/ \int\limits_{a}^{b} w(x){\rm d}x \right)\\ &= \exp \left(\frac{1}{\gamma} \cdot \left. \int\limits_{ra}^{rb} \gamma \log x \cdot w(x/r){\rm d}x \right/ \int\limits_{ra}^{rb} w(x/r){\rm d}x \right)\\ & =\exp \left(\frac{1}{\gamma} \cdot \left. \int\limits_{ra}^{rb} \gamma \log x \cdot w(x){\rm d}x \right/ \int\limits_{ra}^{rb} w(x){\rm d}x \right)\\ & = M^f([ra,rb]). \end{aligned} $$
  3. (iii)

    Let s be a real number and let \([a,b] \subset (-\infty,\infty).\) Then we have

    $$ \begin{aligned} M^f([a,b]) + s &= \frac{1}{\gamma} \log \left( \left.\int\limits_{a}^{b} {\rm e}^{\gamma x} w(x){\rm d}x \right/ \int\limits_{a}^{b} w(x){\rm d}x \right) +s\\ &=\frac{1}{\gamma} \log \left(\left.\int\limits_{a}^{b} {\rm e}^{\gamma (x+s)} w(x){\rm d}x \right/ \int\limits_{a}^{b} w(x){\rm d}x \right)\\ &=\frac{1}{\gamma} \log \left(\left.\int\limits_{a+s}^{b+s} {\rm e}^{\gamma x} w(x-s){\rm d}x \right/ \int\limits_{a+s}^{b+s} w(x-s){\rm d}x \right)\\ &=\frac{1}{\gamma} \log \left( \left.\int\limits_{a+s}^{b+s} {\rm e}^{\gamma x} w(x){\rm d}x \right/ \int\limits_{a+s}^{b+s}w(x){\rm d}x \right)\\ &= M^f([a+s,b+s]). \end{aligned} $$

    Thus we obtain this lemma.\(\hfill\square\)

Proof of Theorem 5.3

  1. (i)

    Let f and g satisfy \(f^{\prime\prime} / f^{\prime}< g^{\prime\prime} / g^{\prime}\) on \((a,b).\) Define

    $$ \begin{aligned} H(y) & =\int\limits_{a}^{y} f(x) w(x){\rm d}x - f \left( M^{g}([a,y]) \right) \int\limits_{a}^{y} w(x){\rm d}x\\ & = \int\limits_{a}^{y} f(x) w(x){\rm d}x\\ & \quad - f \left( g^{-1} \left( \left. \int\limits_{a}^{y} g(x) w(x){\rm d}x \right/ \int\limits_{a}^{y} w(x){\rm d}x \right) \right)\\ &\quad \times\int\limits_{a}^{y} w(x){\rm d}x \end{aligned} $$

    for \(y \in (a,b].\) Then we have

    $$ \begin{aligned} H^{\prime}(y) & = \frac{w(y)}{g^{\prime}(M^{g}([a,y]))}\\ & \quad \times \left( g^{\prime}(M^{g}([a,y])) ( f(y) - f(M^{g}([a,y])) ) \right.\\ & \quad \left. - f^{\prime}(M^{g}([a,y])) ( g(y) - g(M^{g}([a,y])) ) \right). \end{aligned} $$

    On the other hand, the map \(x \, \mapsto \, g^{\prime}(x) / f^{\prime}(x)\) is increasing on \((a,b)\) since

    $$ \left(\frac{g^{\prime}(x)}{f^{\prime}(x)} \right)^{\prime}=\frac{g^{\prime\prime}(x) f^{\prime}(x) - g^{\prime}(x) f^{\prime\prime}(x)}{(f^{\prime}(x))^2} > 0 $$

    for \(x \in (a,b)\) from \(f^{\prime}>0,\) \(g^{\prime}>0\) and \(f^{\prime\prime} / f^{\prime} < g^{\prime\prime} / g^{\prime}\) on \((a,b).\) Therefore, we get

    $$ \frac{g^{\prime}(M^{g}([a,y]))}{f^{\prime}(M^{g}([a,y]))} <\frac{g^{\prime}(\xi)}{f^{\prime}(\xi)}, $$

    where a constant \(\xi \in (M^{g}([a,y], y)\) is given by

    $$ \frac{g^{\prime}(\xi)}{f^{\prime}(\xi)}=\frac{g(y) - g(M^{g}([a,y]))}{f(y)-f(M^{g}([a,y]))} $$

    from Cauchy’s mean value theorem. Thus we get

    $$ \frac{g^{\prime}(M^{g}([a,y]))}{f^{\prime}(M^{g}([a,y]))} < \frac{g(y) - g(M^{g}([a,y]))}{f(y) - f(M^{g}([a,y]))}. $$

    From \(f^{\prime}>0,\) \(g^{\prime}>0\) and the above equality regarding \(H^{\prime}(y),\) this implies \(H^{\prime}(y) < 0\) for \(y \in (a,b),\) Together with \(H(a) = 0,\) we obtain \(H(b) < 0\) for \(b > a.\) Thus we have

    $$ \intop_{a}^{b} f(x) w(x){\rm d}x \,<\, f \left( M^{g}([a,b]) \right) \intop_{a}^{b} w(x){\rm d}x. $$

    Since, \(f^{-1}\) is increasing, we obtain

    $$ \begin{aligned} M^{f}([a,b]) & = f^{-1} \left( \left. \intop_{a}^{b} f(x) w(x){\rm d}x \right/ \intop_{a}^{b} w(x){\rm d}x \right)\\ & < M^{g}([a,b]). \end{aligned} $$

    This also implies

    $$ \begin{aligned} \theta^{f}(a,b)&=\frac{M^{f}([a,b])-a}{b- a}\\ &< \frac{M^{g}([a,b])-a}{b-a}\\ &=\theta^{g}(a,b). \end{aligned} $$

    Thus (i) holds. We also obtain (ii) in the same way as (i). The proof of (iii) is straightforward. Therefore, the proof of this theorem is completed.\(\hfill\square\)

Proof of Theorem 5.6

\((a) \Rightarrow (b) \): Let \([c,d]\) satisfy \([c,d] \subset [a,b]\) and \(c< d.\) Then, we obtain (b) from (a) applying Theorem 5.3(ii) to \(f^{\prime\prime} / f^{\prime} \le g^{\prime\prime} / g^{\prime}\) on \((c,d).\)\( (b) \Rightarrow (a) \): Let \(M^{f}\) and \(M^{g}\) satisfy \(M^{f}(I) \le M^{g}(I)\) for all closed intervals \(I (\subset [a,b]).\) Suppose that \(f^{\prime\prime} / f^{\prime} \le g^{\prime\prime} / g^{\prime}\) does not hold on \((a,b).\) Then there exits an closed interval \([c,d]\) such that \([c,d] \subset [a,b],\)\(c< d\) and \(f^{\prime\prime} / f^{\prime} > g^{\prime\prime} / g^{\prime}\) on \((c,d).\) By Theorem 5.3(i) we have \(M^{f}([c,d]) > M^{g}([c,d]),\) and this contradicts \(M^{f}(I) \le M^{g}(I)\) with \(I=[c,d].\) Therefore, we obtain \(f^{\prime\prime} / f^{\prime} \le g^{\prime\prime} / g^{\prime}\) on \((a,b).\) Thus, the equivalence between (a) and (b) hold. This theorem holds since (b) and (c) are also equivalent clearly.\(\hfill\square\)

Proof of Proposition 5.8

  1. (i)

    Let f and g satisfy \(f^{\prime\prime} / f^{\prime} < g^{\prime\prime} / g^{\prime}\) on \((a,b).\) For \(h=(f+g)/2,\) we have

    $$ \begin{aligned} \frac{h^{\prime\prime}}{h^{\prime}} &=\frac{f^{\prime\prime} + g^{\prime\prime}}{f^{\prime}+g^{\prime}}\\ &=\frac{f^{\prime\prime}}{f^{\prime}}\cdot\frac{f^{\prime}}{f^{\prime} + g^{\prime}}+\frac{g^{\prime\prime}}{g^{\prime}} \cdot \frac{g^{\prime}}{f^{\prime} + g^{\prime}}\\ & < \frac{g^{\prime\prime}}{g^{\prime}} \cdot \frac{f^{\prime}}{f^{\prime} + g^{\prime}}+\frac{g^{\prime\prime}}{g^{\prime}} \cdot \frac{g^{\prime}}{f^{\prime}+ g^{\prime}}\\ & =\frac{g^{\prime\prime}}{g^{\prime}}. \end{aligned} $$

    Therefore, we get \(h^{\prime\prime}/h^{\prime} < g^{\prime\prime}/g^{\prime}.\) In the same way, we also have \(f^{\prime\prime}/f^{\prime} < h^{\prime\prime}/h^{\prime}. \) From Theorem 5.3(i), we obtain \(M^{f}([a,b]) < M^{h}([a,b]) < M^{g}([a,b])\) and \(\theta^{f}(a,b) < \theta^{h}(a,b) <\theta^{g}(a,b).\) We also obtain (ii) in the same way as (i). Therefore the proof is completed.\(\hfill\square\)

Proof of Theorem 5.9

Fix any \(a \in D.\) First, we have

$$ \begin{aligned} \lim_{b \downarrow a} \nu(a,b) & = \lim_{b \downarrow a}\frac{1}{(b - a) \int\nolimits_{a}^{b} w(x){\rm d}x} \int\limits_{a}^{b} (x-a) w(x){\rm d}x\\ & =\lim_{b \downarrow a} \frac{(b-a) w(b)}{\int\nolimits_{a}^{b} w(x){\rm d}x + (b-a) w(b)}\\ & =\lim_{b \downarrow a}\frac{w(b)}{\left. \int\nolimits_{a}^{b} w(x){\rm d}x \right/ (b-a) + w(b)}\\ & =\frac{w(a)}{w(a) + w(a)}=\frac{1}{2}. \end{aligned} $$

Therefore, it holds that \(\lim_{b \downarrow a} \nu(a,b) = 1/2.\) Next, by Taylor expansion, we have

$$ f(x) = f(a) + f^{\prime}(a) (x-a) + {{1}\over {2}} f^{\prime\prime}(c(x)) (x-a)^2 $$

for \(x \in (a,\infty) \cap D,\) where \(c(x)\) satisfies \(a < c(x)< x.\) For \(b \in D\) such that \(a< b,\) it implies that

$$ \begin{aligned} &\frac{\left. \int_{a}^{b} f(x) w(x){\rm d}x \right/ \int_{a}^{b} w(x){\rm d}x- f(a)}{b- a}\\ & \quad =\frac{1}{(b - a) \int_{a}^{b} w(x){\rm d}x} \intop_{a}^{b} (f(x) -f(a)) w(x){\rm d}x\\ & \quad =\frac{1}{(b - a) \int_{a}^{b} w(x){\rm d}x}\\ & \quad \quad\times \intop_{a}^{b} \left( f^{\prime}(a) (x-a) + \frac{1}{2} f^{\prime\prime}(c(x)) (x-a)^2 \right) w(x){\rm d}x. \end{aligned} $$

Then we have

$$ \begin{aligned} &\frac{1}{(b-a) \int_{a}^{b} w(x){\rm d}x} \intop_{a}^{b} f^{\prime}(a) (x-a) w(x) {\rm d}x\\ &=f^{\prime}(a) \nu(a,b) \end{aligned} $$

and

$$ \begin{aligned} &\left|\frac{1}{(b - a) \int_{a}^{b} w(x){\rm d}x} \intop_{a}^{b} \frac{1} {2} f^{\prime\prime}(c(x)) (x-a)^2 w(x){\rm d}x \right|\\ & \quad \le \frac{1}{(b - a) \int_{a}^{b} w(x){\rm d}x} \intop_{a}^{b} K (b-a)^2 w(x){\rm d}x\\ & \quad \le K (b-a) \end{aligned} $$

with a positive constant \(K = \max_{y \in [a,b]} | f^{\prime\prime}(y)|/2.\) Thus we get

$$ \begin{aligned} &\lim_{b \downarrow a} \frac{\left. \int_{a}^{b} f(x) w(x) {\rm d}x \right/ \int_{a}^{b} w(x){\rm d}x- f(a)}{b- a}\\& \qquad\qquad = f^{\prime}(a) \lim_{b \downarrow a} \nu(a,b). \end{aligned} $$
(16)

Next, we put a function

$$ F(t)=\left. \intop_{a}^{t} f(x) w(x){\rm d}x \right/ \intop_{a}^{t} w(x){\rm d}x, $$

for \(t \in (a,\infty) \cap D.\) Then we have

$$ \begin{aligned} &\frac{f^{-1} \left( \left. \int_{a}^{b} f(x) w(x){\rm d}x \right/ \int_{a}^{b} w(x){\rm d}x \right)-a}{\left. \int_{a}^{b} f(x) w(x){\rm d}x \right/ \int_{a}^{b} w(x){\rm d}x - f(a)}\\ &\qquad\qquad =\frac{f^{-1} ( F(b) ) - a}{F(b) - f(a)}. \end{aligned} $$
(17)

Since \(\lim_{b \to a} F(b) = f(a)\) and \(\lim_{t \to f(a)} f^{-1} (t) = a,\) we get

$$ \begin{aligned} \lim_{b \to a} \frac{f^{-1} ( F(b) ) - a}{F(b) - f(a)} & =\lim_{t \to f(a)} \frac{f^{-1} (t) - a}{t - f(a)}\\ &= \left. \frac{1}{f^{\prime}(f^{-1}(t))} \right|_{t=f(a)}\\ & =\frac{1}{f^{\prime}(a)}. \end{aligned} $$
(18)

These equalities (16), (17) and (18) imply

$$ \begin{aligned} \lim_{b \downarrow a} \theta^{f}(a,b)& =\lim_{b \downarrow a} \frac{f^{-1} \left( \left. \int_{a}^{b} f(x) w(x){\rm d}x \right/ \int_{a}^{b} w(x){\rm d}x \right) - a}{b- a}\\& = f^{\prime}(a) \lim_{b \downarrow a} \nu(a,b) \frac{1}{f^{\prime}(a)}\\& = \lim_{b \downarrow a} \nu(a,b)\\& =\frac{1}{2}. \end{aligned} $$

Thus we obtain (10). We can easily check (11) in a similar way. Therefore, we obtain this theorem.\(\hfill\square\)

Proof of Lemma 5.10

  1. (i)

    Fix any \(b>0.\) (12) is trivial from (M.iii). (ii) If \(M^{f}\) satisfies (13), then

    $$ \begin{aligned} \lim_{a \downarrow 0} \theta^{f}(a,b) & = \frac{1}{b} M^{f}([0,b])\\ & =M^{f}([0,1])\\ &=f^{-1} \left( \left.\intop_{0}^{1} f(x) w(x){\rm d}x \right/ \intop_{0}^{1} w(x){\rm d}x \right) \end{aligned} $$

    for \(b>0. \) Thus we have (14). Finally fix any \(a \in D.\) From (13) and (M.iii),

    $$ \begin{aligned} \lim_{b \to \infty} \theta^{f}(a,b)& = \lim_{b \to \infty} \frac{M^{f}([a,b])-a}{b-a}\\& =\lim_{b \to \infty} \frac{1}{b} M^{f}([a,b])\\& = \lim_{b \to \infty} M^{f}([a/b,1])\\ & = M^{f}([0,1]). \end{aligned} $$

    Thus we also obtain (15). Therefore, we get this lemma.\(\hfill\square\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, Y. Quasi-arithmetic means and ratios of an interval induced from weighted aggregation operations. Soft Comput 14, 473–485 (2010). https://doi.org/10.1007/s00500-009-0446-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-009-0446-9

Keywords

Navigation