Skip to main content
Log in

Transformation between type-2 TSK fuzzy systems and an uncertain Gaussian mixture model

  • Original Research
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, an interval extension of the Gaussian mixture model called uncertain Gaussian mixture model (UGMM) is proposed and its transformation into the additive type-2 TSK fuzzy systems is presented. The conditions under which a UGMM becomes a corresponding type-2 TSK fuzzy system are derived theoretically. Furthermore, the mathematical equivalence between the conditional mean of a UGMM and the defuzzified output of a type-2 TSK fuzzy system is proved. Our results provide a new perspective for type-2 TSK fuzzy systems, i.e., interpreting them from a probabilistic viewpoint. Thus, instead of directly estimating the parameters of the fuzzy rules in a type-2 TSK fuzzy system, we can first estimate the parameters of the corresponding UGMM using any popular density estimation algorithm like the expectation maximization (EM) algorithm. Our experimental results clearly indicate that a type-2 fuzzy system trained in such a new way has higher approximation accuracy and stronger robustness than current type-2 fuzzy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Azeem MF, Hanmandlu M, Ahmad N (2003) Structure identification of generalized adaptive neuro-fuzzy inference systems. IEEE Trans Fuzzy Syst 11(5):666–681. doi:10.1109/TFUZZ.2003.817857

    Article  Google Scholar 

  • Box EP, Jenkins GM (1970) Time series analysis, forecasting and control. Holden Day, San Francisco

    MATH  Google Scholar 

  • Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B Methodol 9(1):1–38

    MathSciNet  Google Scholar 

  • Dubois D, Prade H (1993) Fuzzy sets and probability: misunderstandings, bridges, and gaps. In: Proceedings of 2nd IEEE international conference on fuzzy systems (FUZZ-IEEE’93), vol 2, San Francisco, pp 1059–1068

  • Everitt BS, Hand DJ (1981) Finite mixture distributions. Chapman and Hall, London

    MATH  Google Scholar 

  • Gan MT, Hanmandlu M, Tan AH (2005) From a Gaussian mixture model to additive fuzzy systems. IEEE Trans Fuzzy Syst 13(3):303–316. doi:10.1109/TFUZZ.2004.841728

    Article  Google Scholar 

  • Karnik NN, Mendel JM, Liang Q (1999) Type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 7(6):643–658. doi:10.1109/91.811231

    Article  Google Scholar 

  • Kreyszig E (1993) Advanced engineering mathematics. Wiley, Singapore

    MATH  Google Scholar 

  • Kruse R, Meyer KD (1987) Statistics with vague data. D. Reidel, Dordrecht

    MATH  Google Scholar 

  • Liang Q, Mendel JM (1999) An introduction to type-2 TSK fuzzy logic systems. In: Proceedings of 1999 IEEE international conference on fuzzy systems (FUZZ-IEEE’99), Seoul, Korea (South) 3(153):4–1539

  • Liang Q, Mendel JM (2000) Interval type-2 fuzzy logic systems: theory and design. IEEE Trans Fuzzy Syst 8(5):535–550. doi:10.1109/91.873577

    Article  Google Scholar 

  • Mendel JM (2000) Uncertain rule-based fuzzy logic systems: introduction and new directions. Prentice Hall PTR, USA

  • Mendel JM, John RI, Liu F (2006) Interval type-2 fuzzy logic systems made simple. IEEE Trans Fuzzy Syst 4(6):808–821. doi:10.1109/TFUZZ.2006.879986

    Article  Google Scholar 

  • Okuda T, Tanaka H, Asai K (1978) A formulation of fuzzy decision problems with fuzzy information, using probability measures of fuzzy events. Infect Control 38:135–147. doi:10.1016/S0019-9958(78)90151-1

    Article  MATH  MathSciNet  Google Scholar 

  • Wallsten TS, Budescu DV, Rapoport A, Zwick B, Forsyth B (1986) Measuring the vague meanings of probability terms. J Exp Psychol Gen 115(4):348–365. doi:10.1037/0096-3445.115.4.348

    Article  Google Scholar 

  • Zadeh LA (1995) Probability theory and fuzzy logic are complementary rather than competitive. Technometrics 37:271–276. doi:10.2307/1269908

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Hong Kong Polytechnic University Grant (Grant No. Z-08R), National 973 Key Project (Grant No. 2006CB705700), 2007 National Science Foundation of China, National 863 Project (Grant No.2007AA1Z158), 2005 National Defense Basic Research Grant, New_century Outstanding Young Scholar Grant of Ministry of Education of China (Grant No. NCET-04-0496), National KeySoft Lab. at Nanjing University, the Key Laboratory of Computer Science at Institute of Software, CAS, China, the Key Laboratory of Computer Information Technologies at JiangSu Province, the 2004 key project of Ministry of Education of China, and National Key Laboratory of Pattern Recognition at Institute of Automation, CAS, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shitong Wang.

Appendices

Appendix 1

Equation 18 can be derived using the following derivations.

$$ \begin{aligned} \int\limits_{R} {y\tilde{G}_{c} (x,y)dy} & = \int\limits_{R} {y{\frac{{p_{c} }}{{2\pi \sqrt {\left| {\tilde{\Upsigma }_{c} } \right|} }}}\exp \left\{ { - {\frac{1}{2}}\left[ {x - \tilde{\mu }_{{cx}} ,y - \tilde{\mu }_{{cy}} } \right] \times \left[ {\begin{array}{*{20}c} {\tilde{\sigma }_{{cxx}} } & {\tilde{\sigma }_{{cxy}} } \\ {\tilde{\sigma }_{{cyx}} } & {\tilde{\sigma }_{{cyy}} } \\ \end{array} } \right]^{{ - 1}} \times \left[ {\begin{array}{*{20}c} {x - \tilde{\mu }_{{cx}} } \\ {y - \tilde{\mu }_{{cy}} } \\ \end{array} } \right]} \right\}{\text{d}}y} \\ & = {\frac{{p_{c} }}{{2\pi \sqrt {\left| {\tilde{\Upsigma }_{c} } \right|} }}}\int\limits_{R} {y\exp \left\{ { - {\frac{1}{{2\left| {\tilde{\Upsigma }_{c} } \right|}}}\left[ {x - \tilde{\mu }_{{cx}} ,y - \tilde{\mu }_{{cy}} } \right] \times \left[ {\begin{array}{*{20}c} {\tilde{\sigma }_{{cyy}} } & { - \tilde{\sigma }_{{cyx}} } \\ { - \tilde{\sigma }_{{cxy}} } & {\tilde{\sigma }_{{cxx}} } \\ \end{array} } \right] \times \left[ {\begin{array}{*{20}c} {x - \tilde{\mu }_{{cx}} } \\ {y - \tilde{\mu }_{{cy}} } \\ \end{array} } \right]} \right\}{\text{d}}y} \\ & = {\frac{{p_{c} }}{{2\pi \sqrt {\left| {\tilde{\Upsigma }_{c} } \right|} }}}\int\limits_{R} {y\exp \left\{ { - {\frac{1}{{2\left| {\tilde{\Upsigma }_{c} } \right|}}}\left( {\left( {x - \tilde{\mu }_{{cx}} } \right)^{2} \tilde{\sigma }_{{cyy}} - 2\left( {x - \tilde{\mu }_{{cx}} } \right)\left( {y - \tilde{\mu }_{{cy}} } \right)\tilde{\sigma }_{{cxy}} + \left( {y - \tilde{\mu }_{{cy}} } \right)^{2} \tilde{\sigma }_{{cxx}} } \right)} \right\}{\text{d}}y} \\ & = {\frac{{p_{c} }}{{2\pi \sqrt {\left| {\tilde{\Upsigma }_{c} } \right|} }}}\exp \left\{ { - {\frac{{\left( {x - \tilde{\mu }_{{cx}} } \right)^{2} \tilde{\sigma }_{{cyy}} }}{{2\left| {\tilde{\Upsigma }_{c} } \right|}}}} \right\}\int\limits_{R} {y\exp \left\{ { - {\frac{1}{{2\left| {\tilde{\Upsigma }_{c} } \right|}}}\left( {\left( {x - \tilde{\mu }_{{cy}} } \right)^{2} \tilde{\sigma }_{{cxx}} - 2\left( {x - \tilde{\mu }_{{cx}} } \right)\left( {y - \tilde{\mu }_{{cy}} } \right)\tilde{\sigma }_{{cxy}} } \right)} \right\}{\text{d}}y} \\ & = {\frac{{p_{c} }}{{2\pi \sqrt {\left| {\tilde{\Upsigma }_{c} } \right|} }}}\exp \left\{ { - {\frac{{\left( {x - \tilde{\mu }_{{cx}} } \right)^{2} \tilde{\sigma }_{{cyy}} }}{{2\left| {\tilde{\Upsigma }_{c} } \right|}}}} \right\} \\ & \quad \times \exp \left\{ {{\frac{{\left( {x - \tilde{\mu }_{{cx}} } \right)^{2} \tilde{\sigma }_{{cxy}}^{2} }}{{2\left| {\tilde{\Upsigma }_{c} } \right|\tilde{\sigma }_{{cxx}} }}}} \right\} \times \int\limits_{R} {y\exp \left\{ { - {\frac{1}{{2\left| {\tilde{\Upsigma }_{c} } \right|}}}\left( {\left( {y - \tilde{\mu }_{{cy}} } \right)\sqrt {\tilde{\sigma }_{{cxx}} } - \left( {x - \tilde{\mu }_{{cx}} } \right){\frac{{\tilde{\sigma }_{{cxy}} }}{{\sqrt {\tilde{\sigma }_{{cxx}} } }}}} \right)^{2} } \right\}{\text{d}}y} \\ & = {\frac{{p_{c} }}{{2\pi \sqrt {\left| {\tilde{\Upsigma }_{c} } \right|} }}}\exp \left\{ { - {\frac{{\left( {x - \tilde{\mu }_{{cx}} } \right)^{2} }}{{2\left| {\tilde{\Upsigma }_{c} } \right|}}}\left( {\tilde{\sigma }_{{cyy}} - {\frac{{\tilde{\sigma }_{{cxy}}^{2} }}{{\tilde{\sigma }_{{cxx}} }}}} \right)} \right\} \times \int\limits_{R} {y\exp \left\{ { - {\frac{1}{{\left( {2\left| {\tilde{\Upsigma }_{c} } \right|} \right)/\tilde{\sigma }_{{cxx}} }}}\left( {y - \left( {\tilde{\mu }_{{cy}} + \left( {x - \tilde{\mu }_{{cx}} } \right){\frac{{\tilde{\sigma }_{{cxy}} }}{{\tilde{\sigma }_{{cxx}} }}}} \right)} \right)^{2} } \right\}{\text{d}}y} \\ & = p_{c} {\frac{{\sqrt {2\pi {\frac{{\left| {\tilde{\Upsigma }_{c} } \right|}}{{\tilde{\sigma }_{{cxx}} }}}} }}{{2\pi \sqrt {\left| {\tilde{\Upsigma }_{c} } \right|} }}}\exp \left( { - {\frac{{\left( {x - \tilde{\mu }_{{cx}} } \right)^{2} }}{{2{\frac{{\left| {\tilde{\Upsigma }_{c} } \right|}}{{\left( {\tilde{\sigma }_{{cyy}} - {\frac{{\tilde{\sigma }_{{cxy}}^{2} }}{{\tilde{\sigma }_{{cxx}} }}}} \right)}}}}}}} \right)\int\limits_{R} {yN^{1} \left( {y;\tilde{\mu }_{{cy}} + \left( {x - \tilde{\mu }_{{cx}} } \right){\frac{{\tilde{\sigma }_{{cxy}} }}{{\tilde{\sigma }_{{cxx}} }}},{\frac{{\left| {\tilde{\Upsigma }_{c} } \right|}}{{\tilde{\sigma }_{{cxx}} }}}} \right)dy} \\ & = {\frac{{p_{c} }}{{\sqrt {2\pi \tilde{\sigma }_{{cxx}} } }}}\exp \left( { - {\frac{{\left( {x - \tilde{\mu }_{{cx}} } \right)^{2} }}{{2\tilde{\sigma }_{{cxx}} }}}} \right)\left( {\tilde{\mu }_{{cy}} + \left( {x - \tilde{\mu }_{{cx}} } \right){\frac{{\tilde{\sigma }_{{cxy}} }}{{\sigma _{{cxx}} }}}} \right) \\ & = p_{c} N^{1} \left( {x;\tilde{\mu }_{{cx}} ,\tilde{\sigma }_{{cxx}} } \right)\left( {\tilde{\mu }_{{cy}} + \left( {x - \tilde{\mu }_{{cx}} } \right){\frac{{\tilde{\sigma }_{{cxy}} }}{{\tilde{\sigma }_{{cxx}} }}}} \right) \\ \end{aligned} $$

Appendix 2

Equation 24 can be derived using the following derivations.

Let

$$ \begin{array}{*{20}c} {\tilde{\Upsigma }_{c} = \left( {\begin{array}{*{20}c} {\left\{ {\tilde{\sigma }_{{cij}} } \right\}_{{J \times J}} } & {\left\{ {\tilde{\sigma }_{{cj(J + 1)}} } \right\}_{{J \times 1}} } \\ {\left\{ {\tilde{\sigma }_{{c(J + 1)j}} } \right\}_{{1 \times J}} } & {\tilde{\sigma }_{{c(J + 1)(J + 1)}} } \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {\tilde{\sigma }_{{c\vec{x}\vec{x}}} } & {\tilde{\sigma }_{{c\vec{x}y}} } \\ {\tilde{\sigma }_{{cy\vec{x}}} } & {\tilde{\sigma }_{{cyy}} } \\ \end{array} } \right),} \hfill \\ {\tilde{\Upsigma }_{c}^{{ - 1}} = \left( {\begin{array}{*{20}c} {\left\{ {\tilde{\sigma }^{{cij}} } \right\}_{{J \times J}} } & {\left\{ {\tilde{\sigma }^{{cj(J + 1)}} } \right\}_{{J \times 1}} } \\ {\left\{ {\tilde{\sigma }^{{c(J + 1)j}} } \right\}_{{1 \times J}} } & {\tilde{\sigma }^{{c(J + 1)(J + 1)}} } \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {\tilde{\sigma }^{{c\vec{x}\vec{x}}} } & {\tilde{\sigma }^{{c\vec{x}y}} } \\ {\tilde{\sigma }^{{cy\vec{x}}} } & {\tilde{\sigma }^{{cyy}} } \\ \end{array} } \right).} \hfill \\ \end{array} $$

Then,

$$ \begin{aligned} p_{c} \int\limits_{R} {yN^{{J + 1}} \left( {\left( {\begin{array}{*{20}c} {\vec{x}} \\ y \\ \end{array} } \right);\left( {\begin{array}{*{20}c} {\tilde{\vec{\mu }}_{{c\vec{x}}} } \\ {\tilde{\mu }_{{cy}} } \\ \end{array} } \right),\tilde{\Upsigma }_{c} } \right){\text{d}}y} & = \int\limits_{R} {y{\frac{{p_{c} }}{{\left( {2\pi } \right)^{{{\frac{{J + 1}}{2}}}} \sqrt {\left| {\tilde{\Upsigma }_{c} } \right|} }}}\exp \left\{ { - {\frac{1}{2}}\left[ {\vec{x} - \tilde{\overset{\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {\mu } }_{{c\vec{x}}} ,y - \tilde{\mu }_{{cy}} } \right] \times \left[ {\begin{array}{*{20}c} {\tilde{\sigma }_{{c\vec{x}\vec{x}}} } & {\tilde{\sigma }_{{c\vec{x}y}} } \\ {\tilde{\sigma }_{{cy\vec{x}}} } & {\tilde{\sigma }_{{cyy}} } \\ \end{array} } \right]^{{ - 1}} \times \left[ {\begin{array}{*{20}c} {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \\ {y - \tilde{\mu }_{{cy}} } \\ \end{array} } \right]} \right\}{\text{d}}y} \\ & = {\frac{{p_{c} }}{{\left( {2\pi } \right)^{{(J + 1)/2}} \sqrt {\left| {\tilde{\Upsigma }_{c} } \right|} }}}\int\limits_{R} {y\exp \left\{ { - {\frac{1}{2}}\left[ {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} ,y - \tilde{\mu }_{{cy}} } \right] \times \left[ {\begin{array}{*{20}c} {\tilde{\sigma }^{{c\vec{x}\vec{x}}} } & {\tilde{\sigma }^{{c\vec{x}y}} } \\ {\tilde{\sigma }^{{cy\vec{x}}} } & {\tilde{\sigma }^{{cyy}} } \\ \end{array} } \right] \times \left[ {\begin{array}{*{20}c} {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \\ {y - \tilde{\mu }_{{cy}} } \\ \end{array} } \right]} \right\}{\text{d}}y} \\ & = {\frac{{p_{c} }}{{\left( {2\pi } \right)^{{(J + 1)/2}} \sqrt {\left| {\tilde{\Upsigma }_{c} } \right|} }}}\int\limits_{R} {y\exp \left\{ { - {\frac{1}{2}}\left( {\left( {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right)^{\rm T} \tilde{\sigma }^{{c\vec{x}\vec{x}}} \left( {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right) + \left( {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right)^{\rm T} \tilde{\sigma }^{{c\vec{x}y}} \left( {y - \tilde{\mu }_{{cy}} } \right) + \left( {y - \tilde{\mu }_{{cy}} } \right)\tilde{\sigma }^{{cy\vec{x}}} \left( {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right) + \left( {y - \tilde{\mu }_{{cy}} } \right)\tilde{\sigma }^{{cyy}} \left( {y - \tilde{\mu }_{{cy}} } \right)} \right)} \right\}{\text{d}}y} \\ & = {\frac{{p_{c} }}{{\left( {2\pi } \right)^{{(J + 1)/2}} \sqrt {\left| {\tilde{\Upsigma }_{c} } \right|} }}}\int\limits_{R} {y\exp \left\{ { - {\frac{1}{2}}\left( {\left( {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right)^{\rm T} \tilde{\sigma }^{{c\vec{x}\vec{x}}} \left( {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right) + 2\left( {y - \tilde{\mu }_{{cy}} } \right)\left( {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right)^{\rm T} \tilde{\sigma }^{{c\vec{x}y}} + \left( {y - \tilde{\mu }_{{cy}} } \right)^{2} \tilde{\sigma }^{{cyy}} } \right)} \right\}{\text{d}}y} \\ & = {\frac{{p_{c} }}{{\left( {2\pi } \right)^{{(J + 1)/2}} \sqrt {\left| {\tilde{\Upsigma }_{c} } \right|} }}} \cdot \exp \left( { - {\frac{1}{2}}\left( {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right)^{{\text{T}}} \tilde{\sigma }^{{c\vec{x}\vec{x}}} \left( {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right)} \right) \cdot \int\limits_{R} {y\exp \left\{ { - {\frac{1}{2}}\left( {2\left( {y - \tilde{\mu }_{{cy}} } \right)\left( {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right)^{\rm T} \tilde{\sigma }^{{c\vec{x}y}} + \left( {y - \tilde{\mu }_{{cy}} } \right)^{2} \tilde{\sigma }^{{cyy}} } \right)} \right\}{\text{d}}y} \\ & = {\frac{{p_{c} }}{{\left( {2\pi } \right)^{{(J + 1)/2}} \sqrt {\left| {\tilde{\Upsigma }_{c} } \right|} }}} \cdot \exp \left( { - {\frac{1}{2}}\left( {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right)^{\rm T} \tilde{\sigma }^{{c\vec{x}\vec{x}}} \left( {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right)} \right) \cdot \exp \left( {{\frac{1}{2}}\left( {{\frac{{(\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} )^{\rm T} \tilde{\sigma }^{{c\vec{x}y}} }}{{\sqrt {\tilde{\sigma }^{{cyy}} } }}}} \right)^{2} } \right) \cdot \int\limits_{R} {y\exp \left\{ { - {\frac{1}{2}}\left( {\left( {y - \tilde{\mu }_{{cy}} } \right)\sqrt {\tilde{\sigma }^{{cyy}} } + {\frac{{\left( {\overset{\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right)^{\rm T} \tilde{\sigma }^{{c\vec{x}y}} }}{{\sqrt {\tilde{\sigma }^{{cyy}} } }}}} \right)^{2} } \right\}{\text{d}}y} \\ & = {\frac{{p_{c} }}{{\left( {2\pi } \right)^{{(J + 1)/2}} \sqrt {\left| {\tilde{\Upsigma }_{c} } \right|} }}} \cdot \exp \left( { - {\frac{1}{2}}\left( {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right)^{\rm T} \tilde{\sigma }^{{c\vec{x}\vec{x}}} \left( {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right)} \right) \cdot \exp \left( {{\frac{1}{2}}\left( {{\frac{{(\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} )^{\rm T} \tilde{\sigma }^{{c\vec{x}y}} }}{{\sqrt {\tilde{\sigma }^{{cyy}} } }}}} \right)^{2} } \right) \cdot \int\limits_{R} {y\exp \left\{ { - {\frac{1}{{2(1/\tilde{\sigma }^{{cyy}} )}}}\left( {y - \left( {\tilde{\mu }_{{cy}} - {\frac{{\left( {\overset{\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right)^{\rm T} \tilde{\sigma }^{{c\vec{x}y}} }}{{\tilde{\sigma }^{{cyy}} }}}} \right)} \right)^{2} } \right\}{\text{d}}y} \\ & = {\frac{{p_{c} \sqrt {2\pi \left( {1/\tilde{\sigma }^{{cyy}} } \right)} }}{{\left( {2\pi } \right)^{{(J + 1)/2}} \sqrt {\left| {\tilde{\Upsigma }_{c} } \right|} }}} \cdot \exp \left( { - {\frac{1}{2}}\left( {\left( {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right)^{\rm T} \tilde{\sigma }^{{c\vec{x}\vec{x}}} \left( {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right) - {\frac{{((\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} )^{\rm T} \tilde{\sigma }^{{c\vec{x}y}} )^{2} }}{{\tilde{\sigma }^{{cyy}} }}}} \right)} \right) \cdot \int\limits_{R} {yN^{1} \left( {y;\tilde{\mu }_{{cy}} - {\frac{{\left( {\overset{\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right)^{\rm T} \tilde{\sigma }^{{c\vec{x}y}} }}{{\tilde{\sigma }^{{cyy}} }}},{\frac{1}{{\tilde{\sigma }^{{cyy}} }}}} \right){\text{d}}y} \\ & = {\frac{{p_{c} }}{{\left( {2\pi } \right)^{{J/2}} \sqrt {\tilde{\sigma }^{{cyy}} \left| {\tilde{\Upsigma }_{c} } \right|} }}} \cdot \exp \left( { - {\frac{1}{2}}\left( {\left( {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right)^{\rm T} \tilde{\sigma }^{{c\vec{x}\vec{x}}} \left( {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right) - {\frac{{\left( {\left( {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right)^{\rm T} \tilde{\sigma }^{{c\vec{x}y}} } \right)^{2} }}{{\tilde{\sigma }^{{cyy}} }}}} \right)} \right) \cdot \left( {\tilde{\mu }_{{cy}} - {\frac{{\left( {\overset{\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right)^{\rm T} \tilde{\sigma }^{{c\vec{x}y}} }}{{\tilde{\sigma }^{{cyy}} }}}} \right) \\ & = {\frac{{p_{c} }}{{\left( {2\pi } \right)^{{J/2}} \sqrt {\tilde{\sigma }^{{cyy}} \left| {\tilde{\Upsigma }_{c} } \right|} }}} \cdot \left( {\tilde{\mu }_{{cy}} - {\frac{{\left( {\overset{\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right)^{\rm T} \tilde{\sigma }^{{c\vec{x}y}} }}{{\tilde{\sigma }^{{cyy}} }}}} \right) \cdot \exp \left( { - {\frac{1}{2}}\left( {(\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} )^{\rm T} \left( {\tilde{\sigma }^{{c\vec{x}\vec{x}}} - \tilde{\sigma }^{{c\vec{x}y}} \left( {\tilde{\sigma }^{{cyy}} } \right)^{{ - 1}} \tilde{\sigma }^{{cy\vec{x}}} } \right)\left( {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right)} \right)} \right) \\ & = {\frac{{p_{c} }}{{\left( {2\pi } \right)^{{J/2}} \sqrt {\tilde{\sigma }^{{cyy}} \left| {\tilde{\Upsigma }_{c} } \right|} }}} \cdot \left( {\tilde{\mu }_{{cy}} - {\frac{{\left( {\overset{\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right)^{{\text{T}}} \tilde{\sigma }^{{c\vec{x}y}} }}{{\tilde{\sigma }^{{cyy}} }}}} \right) \cdot \exp \left( { - {\frac{1}{2}}\left( {\left( {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right)^{{\text{T}}} \left( {\tilde{\sigma }^{{c\vec{x}\vec{x}}} } \right)^{{ - 1}} \left( {\vec{x} - \tilde{\vec{\mu }}_{{c\vec{x}}} } \right)} \right)} \right) \\ & = p_{c} N^{J} \left( {\overset{\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {x} ;\tilde{\vec{\mu }}_{{c\overset{\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {x} }} ,\left\{ {\tilde{\sigma }_{{cij}} } \right\}_{{J \times J}} } \right) \cdot \left( {\tilde{\mu }_{{cy}} - {\frac{{\left( {\overset{\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {x} - \tilde{\vec{\mu }}_{{c\overset{\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {x} }} } \right)^{\rm T} \left\{ {\tilde{\sigma }^{{cj(J + 1)}} } \right\}_{{J \times 1}} }}{{\tilde{\sigma }^{{c(J + 1)(J + 1)}} }}}} \right) \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Chung, Fl. & Wang, S. Transformation between type-2 TSK fuzzy systems and an uncertain Gaussian mixture model. Soft Comput 14, 701–711 (2010). https://doi.org/10.1007/s00500-009-0459-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-009-0459-4

Keywords

Navigation