Skip to main content

Advertisement

Log in

An approach to parameters estimation of a chromatography model using a clustering genetic algorithm based inverse model

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Genetic algorithms are tools for searching in complex spaces and they have been used successfully in the system identification solution that is an inverse problem. Chromatography models are represented by systems of partial differential equations with non-linear parameters which are, in general, difficult to estimate many times. In this work a genetic algorithm is used to solve the inverse problem of parameters estimation in a model of protein adsorption by batch chromatography process. Each population individual represents a supposed condition to the direct solution of the partial differential equation system, so the computation of the fitness can be time consuming if the population is large. To avoid this difficulty, the implemented genetic algorithm divides the population into clusters, whose representatives are evaluated, while the fitness of the remaining individuals is calculated in function of their distances from the representatives. Simulation and practical studies illustrate the computational time saving of the proposed genetic algorithm and show that it is an effective solution method for this type of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altenhöner U, Meurer M, Strube J, Schmidt-Traub H (1997) Parameter estimation for the simulation of liquid chromatography. J Chromatogr 769:59–69

    Article  Google Scholar 

  • Andrés-Toro B, Besada-Portas E, Fernández-Blanco P, López-Orozco J, Girón-Sierra J (2002) Multiobjective optimization of dynamic processes by evolutionary methods. In: Proceedings of the 15th IFAC World Congress on Automatic Control, pp 342–348. Barcelona, Spain

  • Angelov P, Guthke R (1997) A ga-based approach to optimization of bioprocesses described by fuzzy rules. J Bioprocess Eng 16:299–301

    Article  Google Scholar 

  • Au W, Chan K, Yao X (2003) A novel evolutionary data mining algorithm with applications to churn prediction. IEEE Trans Evol Comput 7(6):532–545

    Article  Google Scholar 

  • Back T (1997) Handbook of evolutionary computation. Oxford University Press, Oxford

    Book  Google Scholar 

  • Benini E, Toffolo A (2002) Optimal design of horizontal-axis wind turbines using blade-element theory and evolutionary computation. J Solar Energy Eng 124(4):357–363

    Article  Google Scholar 

  • Davis L (1991) The handbook of genetic algorithms. Van Nostrand Reinholdm, New York

    Google Scholar 

  • de Vasconcellos J, Silva Neto A, Santana C (2003) An inverse mass transfer problem in solid-liquid adsorption systems. Inverse Probl Eng 11(5):391–408

    Article  Google Scholar 

  • de Vasconcellos J, Silva Neto A, Santana C, Soeiro F (2002) Parameter estimation in adsorption columns with stochastic global optimization methods. In: 4th international conference on inverse problems in engineering, Rio de Janeiro, Brazil, pp 45–51

  • Deb K, Anand A, Joshi D (2002) A computationally efficient evolutionary algorithm for real-parameter optimization. Evol Comput 10:371–395

    Article  Google Scholar 

  • Dennis J, Schnabel R (1983) Numerical methods for unconstrained optimization and nonlinear equations. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Eykhoff P (1974) System identification. Parameter and state estimation. Wiley, New York

  • Fletcher R (1987) Practical methods of optimization. Wiley, New York

    MATH  Google Scholar 

  • Fu R, Xu T, Pan Z (2005) Modelling of the adsorption of bovine serum albumin on porous polyethylene membrane by back-propagation artificial neural network. J Membr Sci 251:137–144

    Article  Google Scholar 

  • Garcia S, Fernández A, Luengo J, Herrera F (2009) A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft Computing 13:959–977. Published online 20th December 2008. Springer

    Google Scholar 

  • Georgieva O, Hristozov I, Pencheva T, Tzonkov S, Hitzmann B (2003) Mathematical modelling and variable structure control systems for fed-batch fermentation of Escherichia coli. Biochem Eng Quart 17(4):293–299

    Google Scholar 

  • Giro R, Cyrillo M, Galvâo D (2002) Designing conducting polymers using genetic algorithms. Chem Phys Lett 366(1–2):170–175

    Article  Google Scholar 

  • Goldberg D (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Gu T (1995) Mathematical modelling and scale-up of liquid chromatography. Springer, New York

    Google Scholar 

  • Guiochon G, Shirazi D, Felinger A, Katti A (2006) Fundamentals of preparative and nonlinear chromatography, 2nd edn. Academic Press, London

  • Hee-Su K, Sung-Bae C (2001) An efficient genetic algorithm with less fitness evaluation by clustering. In: Proceedings of the 2001 IEEE congress on evolutionary computation. IEEE

  • Herrera F, Lozano M (2005) Editorial note: real coded genetic algorithms. special issue on real coded genetic algorithms: foundations, models and operators. Softcomputing 9(4):223–224

    Google Scholar 

  • Herrera F, Lozano M, Sánchez AM (2003) A taxonomy for the crossover operator for real-coded genetic algorithms. an experimental study. Int J Intell Syst 18(3):309–338

    Article  MATH  Google Scholar 

  • Herrera F, Lozano M, Verdegay J (1998) Tackling real-coded genetic algorithms: operators and tools for the behavioral analysis. Artif Intell Rev 12(4):265–319

    Article  MATH  Google Scholar 

  • Horstmann BJ, Chase HA (1989) Modelling the affinity adsorption of immunoglobulin g to protein a immobilized to agarose matrices. Chem Eng Res Des 67

  • Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice Hall, Upper Saddle River

  • Jin Y (2002) Fitness approximation in evolutionary computation: A survey. In: Proceedings of the 2002 genetic and evolutionary computation conference, pp 1105–1112

  • Jin Y (2005) A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput 9(1):3–9. Special Issue on “approximation and learning in evolutionary computation”

    Google Scholar 

  • Karr C, Yakushin I, Nicolosi K (2000) Solving inverse initial-value, boundary-value problems via genetic algorithm. Eng Appl Artif Intell 13:625–633

    Article  Google Scholar 

  • Kewley R, Embrechts M (2002) Computational military tactical planning system. IEEE Trans Syst Man Cybernet Part C Appl Rev 32(2):161–171

    Article  Google Scholar 

  • Ljung L (1999) Model validation and model error modeling. Tech. Rep. LiTH-ISY-R-215, Lund University, Sweden

  • Ljung L (1999) System identification Theory for the user, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Ljung L, Glad T (1994) Modeling of dynamic systems. Prentice Hall, Upper Saddle River

  • Manterea T, Alanderb J (2005) Evolutionary software engineering, a review. Appl Soft Comput 5(3):315–331

    Article  Google Scholar 

  • Michalewicz Z (1992) Genetic algorithms + data structures = evolution programs. Springer, Berlin

    MATH  Google Scholar 

  • Montiel O, Castillo O, Melin P, Sepulveda R (2003) The evolutionary learning rule for system identification. Appl Soft Comput 3(4):343–352

    Article  Google Scholar 

  • Nagata Y, Chu K (2003) Optimization of a fermentation medium using neural networks and genetic algorithms. Biotechnol Lett 25(21):1837–1842

    Article  Google Scholar 

  • Nelder J, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313

    MATH  Google Scholar 

  • Oduguwa V, Tiwari A, Roy R (2005) Evolutionary computing in manufacturing industry: an overview of recent applications. Appl Soft Comput 5(3):281–299

    Article  Google Scholar 

  • ONeil P (1983) Advanced engineering mathematics. Wadsworth Publishing Company, Belmont

    Google Scholar 

  • Persson P, Nilsson B (2001) Parameter estimation of protein chromatographic processes based on breakthrough curves. In: Dochain D, Perrier M (eds) Proceedings of the 8th international conference on computer applications in biotechnology. Quebec City, Canada

  • Roeva O, Pencheva T, et al (2004) A genetic algorithms based approach for identification of escherichia coli fed-batch fermentation. Bioautomation 1:30–41

    Google Scholar 

  • Sheskin D (2006) Handbook of parametric and nonparametric statistical procedures, vol. 1736. Chapman & Hall//CRC, Londos/West Palm Beach

    Google Scholar 

  • Söderstrom T, Stoica P (1994) System identification. Prentice Hall International, Hemel Hempstead, Paperback Edition

  • Tarantola A (2005) Inverse problem theory and model parameter estimation. SIAM

  • Zar J (1999) Biostatiscal analysis. Prentice Hall, Englewood Cliffs

  • Zhou Z, Ong Y, Nair P (2004) Hierarchical surrogate-assisted evolutionary optimization framework. In: Proceedings of IEEE congress evolutionary computation CEC’04, special session on learning and approximation in design optimization, Portland, USA, pp 1586–1593

  • Zhou Z, Ong Y, Nair P, Keane AJ, Lum K (2007) Combining global and local surrogate models to accelerate evolutionary optimization. IEEE Trans Syst Man Cybernet Part C Appl Rev 37(1):66–76

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by CAPES/Brasil, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; MES/Cuba, Ministerio de Educación Superior; CNP/Brasil, Conselho Nacional de Desenvolvimento Científico e Tecnológico and FAPERJ/Brasil, Fundação Carlos Chagas Filho de Amparo à Pesquisa do estado do Rio de Janeiro. Also, the authors want to thank the suggestions of the colleagues and friends Dr. David Pelta and Dr. José L. Verdegay from Granada University in Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirtha Irizar Mesa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irizar Mesa, M., Llanes-Santiago, O., Herrera Fernández, F. et al. An approach to parameters estimation of a chromatography model using a clustering genetic algorithm based inverse model. Soft Comput 15, 963–973 (2011). https://doi.org/10.1007/s00500-010-0638-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-010-0638-3

Keywords

Navigation