Skip to main content
Log in

Robust intelligent backstepping tracking control for wheeled inverted pendulum

  • Original Paper
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this study, a robust intelligent backstepping tracking control (RIBTC) system combined with adaptive output recurrent cerebellar model articulation controller (AORCMAC) and H control technique is proposed for wheeled inverted pendulums (WIPs) with unknown system dynamics and external disturbance. The AORCMAC is a nonlinear adaptive system with simple computation, good generalization capability and fast learning property. Therefore, the WIP can stand upright when it moves to a designed position stably. In the proposed control system, an AORCMAC is used to copy an ideal backstepping control, and a robust H controller is designed to attenuate the effect of the residual approximation errors and external disturbances with desired attenuation level. Moreover, the all adaptation laws of the RIBTC system are derived based on the Lyapunov stability analysis, the Taylor linearization technique and H control theory, so that the stability of the closed-loop system and H tracking performance can be guaranteed. The proposed control scheme is practical and efficacious for WIPs by simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agarwal M (1997) A systematic classification of neural-network-based control. IEEE Trans Control Syst Mag 17(2):75–93

    Article  Google Scholar 

  • Albus JS (1975a) A new approach to manipulator control the cerebellar model articulation controller (CMAC). Trans ASME J Dyn Syst Meas Control 97(3):220–227

    Article  MATH  Google Scholar 

  • Albus JS (1975b) Data storage in the cerebellar model articulation controller (CMAC). Trans ASME J Dyn Syst Meas Control 97(3):228–233

    Article  MATH  Google Scholar 

  • Casavola A, Mosca E, Papini M (2004) Control under constraints: an application of the command governor approach to an inverted pendulum. IEEE Control Syst Technol 12(1):193–204

    Article  Google Scholar 

  • Casavola A, Mosca E, Papini M (2006) Predictive teleoperation of constrained dynamic systems via Internet-like channels. IEEE Control Syst Technol 14(4):681–694

    Article  Google Scholar 

  • Chen BS, Lee CH (1996) H tracking design of uncertain nonlinear SISO system: adaptive fuzzy approach. IEEE Trans Fuzzy Syst 4:32–43

    Article  Google Scholar 

  • Chiu CH (2010) The design and implementation of a wheeled inverted pendulum using an adaptive output recurrent cerebellar model articulation controller. IEEE Trans Ind Electron 57(5):1814–1822

    Article  Google Scholar 

  • Chow TWS, Fang Y (1998) A recurrent neural-network-based real-time learning control strategy applying to nonlinear systems with unknown dynamics. IEEE Trans Ind Electron 45(1):151–161

    Article  MathSciNet  Google Scholar 

  • El-Hawwary MI, Elshafei AL, Emara HM, Fattah HAA (2006) Adaptive fuzzy control of the inverted pendulum problem. IEEE Control Syst Technol 14(6):1135–1144

    Article  Google Scholar 

  • Er MJ, Kee BH, Tan CC (2002) Design and development of an intelligent control for a pole-balancing robot. Elsevier Sci Microprocess Microsyst 26:433–448

    Article  Google Scholar 

  • Grasser F, D’Arrigo A, Colombi S, Rufer AC (2002) JOE: a mobile, inverted pendulum. IEEE Trans Ind Electron 39(1):107–114

    Article  Google Scholar 

  • Ha YS, Yuta S (1996) Trajectory tracking control for navigation of the inverse pendulum type self-contained mobile robot. Robot Autonom Syst 17:65–80

    Article  Google Scholar 

  • Jemei S, Hissel D, Pera MC, Kauffmann JM (2008) A new modeling approach of embedded fuel-cell power generators based on artificial neural network. IEEE Trans Ind Electron 55(1):437–447

    Article  Google Scholar 

  • Jung S, Kim SS (2007) Hardware implementation of a real-time neural network controller with a DSP and an FPGA for nonlinear systems. IEEE Trans Ind Electron 54(1):265–271

    Article  Google Scholar 

  • Jung S, Kim SS (2008) Control experiment of a wheel-driven mobile inverted pendulum using neural network. IEEE Trans Control Syst Technol 16(2):297–303

    Article  MathSciNet  Google Scholar 

  • Khan M, Rahman MA (2009) Development and implementation of a novel fault diagnostic and protection technique for IPM motor drives. IEEE Trans Ind Electron 56(1):85–92

    Article  Google Scholar 

  • Kokotovic PV (1992) The joy of feedback nonlinear and adaptive. IEEE Control Syst Mug 12(3):7–17

    Article  Google Scholar 

  • Krstic M, Kanellakopoulos I, Kokotovic PV (1995) Nonlinear and adaptive control design. Wiley, New York

    Google Scholar 

  • Lee CH, Teng CC (2000) Identification and control of dynamic systems using recurrent fuzzy neural networks. IEEE Trans Fuzzy Syst 8(4):349–366

    Article  Google Scholar 

  • Leu YG, Wang WY, Lee TT (1999) Robust adaptive fuzzy-neural controllers for uncertain nonlinear systems. IEEE Trans Robot Automat 15:805–817

    Article  Google Scholar 

  • Lin FJ, Chou PH (2009) Adaptive control of two-axis motion control system using interval type-2 fuzzy neural network. IEEE Trans Ind Electron 56(1):178–193

    Article  Google Scholar 

  • Lin CM, Mon YJ (2005) Decoupling control by hierarchical fuzzy sliding-mode controller. IEEE Control Syst Technol 13(4):593–598

    Article  Google Scholar 

  • Lin SC, Tsai CC (2009) Development of a self-balancing human transportation vehicle for the teaching of feedback control. IEEE Trans Educ 52(1):157–168

    Article  Google Scholar 

  • Lin FJ, Shyu KK, Wai RJ (2001) Recurrent-fuzzy-neural-network sliding-mode controlled motor-toggle servomechanism. IEEE/ASME Trans Mechatron 6(4):453–466

    Article  Google Scholar 

  • Lin FJ, Shen PH, Fung RF (2005) RFNN control for PMLSM drive via backstepping technique. IEEE Trans Aerosp Electron Syst 41:620–644

    Article  Google Scholar 

  • Lu HC, Chuang CY, Yeh MF (2009) Design of a hybrid adaptive CMAC with supervisory controller for a class of nonlinear system. Neurocomputing 72:1920–1933

    Article  Google Scholar 

  • Mazumdar J, Harley RG (2008) Recurrent neural networks trained with backpropagation through time algorithm to estimate nonlinear load harmonic currents. IEEE Trans Ind Electron 55(9):3484–3491

    Article  Google Scholar 

  • Pathak K, Franch J, Agrawal SK (2005) Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Trans Robotics 21(3):505–513

    Article  Google Scholar 

  • Peng YF (2009) Robust intelligent backstepping tracking control for uncertain non-linear chaotic systems using H control technique. Chaos Solitons Fractals 41(4):2081–2096

    Article  MathSciNet  MATH  Google Scholar 

  • Peng YF, Wai RJ, Lin CM (2004) Implementation of LLCC-resonant driving circuit and adaptive CMAC neural network control for linear piezoelectric ceramic motor. IEEE Trans Ind Electron 51:35–48

    Article  Google Scholar 

  • Ren TJ, Chen TC, Chen CJ (2008) Motion control for a two-wheeled vehicle using a self-tuning PID controller. Control Eng Practice 16(3):365–375

    Article  MathSciNet  Google Scholar 

  • Slotine JJE, Li WP (1991) Applied nonlinear control. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Takimoto T, Yamamoto S, Oku H (2008) Washout control for manual operations. IEEE Control Syst Technol 16(6):1169–1176

    Article  Google Scholar 

  • Tao CW, Taur JS, Hsieh TW, Tsai CL (2008) Design of a fuzzy controller with fuzzy swing-up and parallel distributed pole assignment schemes for an inverted pendulum and cart system. IEEE Control Syst Technol 16(6):1277–1288

    Article  Google Scholar 

  • Wai RJ, Lin FJ, Duan RY, Hsieh KY, Lee JD (2002) Robust fuzzy neural network control for linear ceramic motor drive via backstepping design technique. IEEE Trans Fuzzy Syst 10:102–112

    Article  Google Scholar 

  • Yeh MF (2007) Single-input CMAC control system. Neurocomputing 70:2638–2644

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Hui Chiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, CH., Peng, YF. & Lin, YW. Robust intelligent backstepping tracking control for wheeled inverted pendulum. Soft Comput 15, 2029–2040 (2011). https://doi.org/10.1007/s00500-011-0702-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-011-0702-7

Keywords

Navigation