Abstract
Real-world problems are inherently constrained optimization problems often with multiple conflicting objectives. To solve such constrained multi-objective problems effectively, in this paper, we put forward a new approach which integrates self-adaptive differential evolution algorithm with α-constrained-domination principle, named SADE-αCD. In SADE-αCD, the trial vector generation strategies and the DE parameters are gradually self-adjusted adaptively based on the knowledge learnt from the previous searches in generating improved solutions. Furthermore, by incorporating domination principle into α-constrained method, α-constrained-domination principle is proposed to handle constraints in multi-objective problems. The advantageous performance of SADE-αCD is validated by comparisons with non-dominated sorting genetic algorithm-II, a representative of state-of-the-art in multi-objective evolutionary algorithms, and constrained multi-objective differential evolution, over fourteen test problems and four well-known constrained multi-objective engineering design problems. The performance indicators show that SADE-αCD is an effective approach to solving constrained multi-objective problems, which is basically enabled by the integration of self-adaptive strategies and α-constrained-domination principle.












Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
The source code can be downloaded from the author’s homepage.
References
Abbass HA (2002) The self-adaptive pareto differential evolution algorithm. In: Proceedings of the 2002 congress on evolutionary computation, 2002. CEC’02, pp 831–836. doi:10.1109/CEC.2002.1007033
Brest J, Greine S, Boskovic B, Mernik M, Zumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6):646–657. doi:10.1109/TEVC.2006.872133
Brest J, Boskovic B, Greiner S, Zumer V, Maucec MS (2007) Performance comparison of self-adaptive and adaptive differential evolution algorithms. Soft Comput 11(7):617–629. doi:10.1007/s00500-006-0124-0
Cai Z, Wang Y (2006) A multiobjective optimization-based evolutionary algorithm for constrained optimization. IEEE Trans Evol Comput 10(6):658–675. doi:10.1109/TEVC.2006.872344
Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279. doi:10.1109/tevc.2004.826067
Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York
Deb K, Pratap A, Meyarivan T (2001) Constrained test problems for multi-objective evolutionary optimization. In: 1st International Conference on evolutioary multi-criterion optimization (EMO 2001), SWISS FED INST TECHNOL. Lecture notes in computer science, vol 1993. Springer Berlin, Germany, pp 284–298
Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. doi:10.1109/4235.996017
Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Trans Evol Comput 3(2):124–141. doi:10.1109/4235.771166
Gong W, Cai Z, Zhu L (2009) An efficient multiobjective differential evolution algorithm for engineering design. Struct Multidiscip Optim 38(2):137–157. doi:10.1007/s00158-008-0269-9
Huang VL, Qin AK, Suganthan PN, Tasgetiren MF (2007) Multi-objective optimization based on self-adaptive differential evolution algorithm. In: IEEE Congress on evolutionary computation, 2007 (CEC 2007), pp 3601–3608. doi:10.1109/CEC.2007.4424939
Huang VL, Zhao SZ, Mallipeddi R, Suganthan PN (2009) Multi-objective optimization using self-adaptive differential evolution algorithm. In: IEEE Congress on evolutionary computation, 2009 (CEC 2009), pp 190–194. doi:10.1109/CEC.2009.4982947
Knowles J, Thiele L, Zitzler E (2006) A tutorial on the performance assessment of stochastic multiobjective optimizers. Computer Engineering and Networks Laboratory (TIK), ETH Zurich (revised version)
Kotinis M (2010) A particle swarm optimizer for constrained multi-objective engineering design problems. Eng Optim 42(10):907–926. doi:10.1080/03052150903505877
Kukkonen S, Lampinen J (2005) GDE3: the third evolution step of generalized differential evolution. In: 2005 IEEE Congress on Evolutionary Computation, pp 443–450. doi:10.1109/CEC.2005.1554717
Kurpati A, Azarm S, Wu J (2002) Constraint handling improvements for multiobjective genetic algorithms. Struct Multidiscip Optim 23(3):204–213. doi:10.1007/s00158-002-0178-2
Li L, Wang L, Xu Y (2009) Differential evolution with level comparison for constrained optimization. In: Emerging Intelligent Computing Technology and Applications. With Aspects of Artificial Intelligence. Springer, vol 5755, pp 351–360. doi:10.1007/978-3-642-04020-7-37
Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution algorithm. Soft Comput 9(6):448–462. doi:10.1007/s00500-004-0363-x
Mezura-Montes E, Reyes-Sierra M, Coello Coello CA (2008) Multi-objective optimization using differential evolution: A survey of the state-of-the-art. In: Advances in Differential Evolution, vol 143. Springer Berlin, Heidelberg, pp 173–196. doi:10.1007/978-3-540-68830-3-7
Osyczka A, Kundu S (1995) A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm. Struct Multidiscip Optim 10(2):94–99. doi:10.1007/BF01743536
Qian W, Li A (2008) Adaptive differential evolution algorithm for multiobjective optimization problems. Appl Math Comput 201(1–2):431–440. doi:10.1016/j.amc.2007.12.052
Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. In: IEEE Congress on Evolutionary Computation, 2005 (CEC 2005), pp 1785–1791. doi:10.1109/CEC.2005.1554904
Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417. doi:10.1109/TEVC.2008.927706
Qin H, Zhou J, Lu Y, Wang Y, Zhang Y (2010) Multi-objective differential evolution with adaptive cauchy mutation for short-term multi-objective optimal hydro-thermal scheduling. Energy Convers Manag 51(4):788–794. doi:10.1016/j.enconman.2009.10.036
Qu B, Suganthan P (2011) Constrained multi-objective optimization algorithm with an ensemble of constraint handling methods. Engineering Optimization 43(4):403–416. doi:10.1080/0305215X.2010.493937
Ray T, Liew KM (2002) A swarm metaphor for multiobjective design optimization. Eng Optim 34(2):141–153. doi:10.1080/03052150210915
Runarsson TP, Yao X (2000) Stochastic ranking for constrained evolutionary optimization. IEEE Trans Evol Comput 4(3):284–294. doi:10.1109/4235.873238
Santana-Quintero LV, Hernndez-Dlaz AG, Molina J, Coello CAC (2010) DEMORS: A hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems. Comput Oper Res 37(3):470–480. doi:10.1016/j.cor.2009.02.006
Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol comput 2(3):221–248. doi:10.1162/evco.1994.2.3.221
Storn R, Price K (1996) Minimizing the real functions of the ICEC’96 contest by differential evolution. In: Proceedings of IEEE International Conference on Evolutionary Computation (CEC’96), pp 842–844. doi:10.1109/ICEC.1996.542711
Takahama T, Sakai S (2005) Constrained optimization by applying the alpha constrained method to the nonlinear simplex method with mutations. IEEE Trans Evol Comput 9(5):437–451. doi:10.1109/TEVC.2005.850256
Takahama T, Sakai S (2006a) Constrained optimization by the \(\varepsilon\) constrained differential evolution with gradient-based mutation and feasible elites. In: IEEE Congress on Evolutionary Computation, 2006 (CEC 2006), pp 1–8. doi:10.1109/CEC.2006.1688283
Takahama T, Sakai S (2006b) Constrained optimization by the \(\varepsilon\) constrained differential evolution with gradient-based mutation and feasible elites. In: 2006 IEEE Congress on Evolutionary Computation, pp 308–315. doi:10.1109/CEC.2006.1688283
Tanaka M, Watanabe H, Furukawa Y, Tanino T (1995) GA-based decision support system for multicriteria optimization. In: IEEE International Conference on Systems, Man and Cybernetics, 1995. Intelligent Systems for the 21st Century, pp 1156–1161. doi:10.1109/ICSMC.1995.537993
Teo J (2006) Exploring dynamic self-adaptive populations in differential evolution. Soft Comput 10(8):673–686. doi:10.1007/s00500-005-0537-1
Tessema B, Yen GG (2009) An adaptive penalty formulation for constrained evolutionary optimization. IEEE Trans Syst Man Cybern Part A Syst Hum 39(3):565–578. doi:10.1109/TSMCA.2009.2013333
Vesterstrom J, Thomsen R (2004) A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: IEEE Congress on Evolutionary Computation, 2004 (CEC2004), pp 1980–1987. doi:10.1109/CEC.2004.1331139
Wang L, Li L (2010) An effective differential evolution with level comparison for constrained engineering design. Struct Multidiscip Optim 41(6):947–963. doi:10.1007/s00158-009-0454-5
Wang L, Li L (2011) Fixed-structure \(H_{\infty}\)controller synthesis based on differential evolution with level comparison. IEEE Trans Evol Comput 15(1):120–129. doi:10.1109/TEVC.2010.2077300
Wang Y, Cai Z, Zhou Y, Fan Z (2009) Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique. Structural and Multidisciplinary Optimization 37(4):395–413. doi:10.1007/s00158-008-0238-3
Wang Y, Wu L, Yuan X (2010) Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure. Soft Comput 14(3):193–209. doi:10.1007/s00500-008-0394-9
Wang Y, Cai Z, Zhang Q (2011) Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans Evol Comput 15(1):55–66. doi:10.1109/TEVC.2010.2087271
Zhang J, Sanderson AC (2009) Jade: Adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 9(6):945–958. doi:10.1109/TEVC.2009.2014613
Zheng J (2007) Multi-Objective Optimization Evolutionary Algorithms (In Chinese). Science Press, Beijing (in Chinese)
Zhou A, Qu BY, Li H, Zhao SZ, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary algorithms: A survey of the state-of-the-art. Swarm and Evolutionary Computation 1(1). doi:10.1016/j.swevo.2011.03.001
Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195. doi:10.1162/106365600568202
Acknowledgments
Authors would like to express their sincere thanks to the reviewers for their valuable suggestions and comments, and Dr. P.N. Suganthan for providing the source codes of CMODE. This work was supported by Major State Basic Research Development Program of China (973 Program: 2012CB720500), National Natural Science Foundation of China (Key Program: 61134007), Major State Basic Research Development Program of Shanghai (10JC1403500), New Teacher Fund Program of Specialized Research Fund for the Doctoral Program of Higher Education (No. 200802511011), Shanghai Leading Academic Discipline Project (No. B504).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Qian, F., Xu, B., Qi, R. et al. Self-adaptive differential evolution algorithm with α-constrained-domination principle for constrained multi-objective optimization. Soft Comput 16, 1353–1372 (2012). https://doi.org/10.1007/s00500-012-0816-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-012-0816-6