Skip to main content
Log in

Utilization of analytic programming for the evolutionary synthesis of the robust multi-chaotic controller for selected sets of discrete chaotic systems

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

A novel tool for symbolic regression, analytical programming and its application for the synthesis of a new robust feedback control law are presented in this paper. This synthesized robust chaotic controller secures the fully stabilization of several selected sets containing one-dimensional, two-dimensional and evolutionary synthesized discrete chaotic systems. The paper consists of the descriptions of analytic programming as well as selected chaotic systems, used heuristic and cost function design. For experimentation, self-organizing migrating algorithm and differential evolution were used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abedini M, Vatankhah R, Assadian N (2012) Stabilizing chaotic system on periodic orbits using multi-interval and modern optimal control strategies. Commun Nonlinear Sci Numer Simul 17(10):3832–3842

    Article  MATH  MathSciNet  Google Scholar 

  • Aydin I, Karakose M, Akin E (2010) Chaotic-based hybrid negative selection algorithm and its applications in fault and anomaly detection. Expert Syst Appl 37(7):5285–5294

    Article  Google Scholar 

  • Aziz-Alaoui MA, Robert C, Grebogi C (2001) Dynamics of a HènonLozi-type map. Chaos Solitons Fractals 12(12):2323–2341

    Article  MATH  MathSciNet  Google Scholar 

  • Caponetto R, Fortuna L, Fazzino S, Xibilia MG (2003) Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans Evol Comput 7(3):289–304

    Article  Google Scholar 

  • Davendra D, Zelinka I, Senkerik R (2010) Chaos driven evolutionary algorithms for the task of PID control. Comput Math Appl 60(4):1088–1104

    Article  MATH  MathSciNet  Google Scholar 

  • Davendra D, Zelinka I, Senkerik R, Bialic-Davendra M (2010) Chaos driven evolutionary algorithm for the traveling salesman problem. In: Davendra D (ed) Traveling salesman problem, theory and applications. InTech Europe, Rijeka

  • Davendra D (2010) Evolutionary algorithms and the edge of Chaos. In: Zelinka I, Celikovsky S, Richter H, Chen G (eds) Evolutionary algorithms and chaotic systems, vol 267., Studies in computational intelligence. Springer, Berlin Heidelberg, pp 145–161

  • Davendra D, Bialic-Davendra M, Senkerik R (2013) Scheduling the lot-streaming flowshop scheduling problem with setup time with the chaos-induced enhanced differential evolution. In: 2013 IEEE Symposium on Differential Evolution (SDE), pp 119–126

  • Deugo D, Ferguson D (2004) Evolution to the Xtreme: evolving evolutionary strategies using a meta-level approach. In: CEC2004 Congress on Evolutionary Computation, 19–23 June 2004, pp 31–38

  • Dioşan L, Oltean M (2009) Evolutionary design of evolutionary algorithms. Genet Program Evol Mach 10(3):263–306

    Article  Google Scholar 

  • Edmonds B (2001) Meta-genetic programming: co-evolving the operators of variation. Elektrik 9(1):13–30

    Google Scholar 

  • Eiben AE, Michalewicz Z, Schoenauer M, Smith J (2007) Parameter control in evolutionary algorithms. In: Parameter setting in evolutionary algorithms. Springer, Berlin Heidelberg, pp 19–46

  • Hilborn RC (2000) Chaos and nonlinear dynamics: an introduction for scientists and engineers. Oxford University Press, Oxford

  • Jones DF, Mirrazavi SK, Tamiz M (2002) Multi-objective meta-heuristics: an overview of the current state-of-the-art. Eur J Oper Res 137(1):1–9

    Article  MATH  Google Scholar 

  • Just W (2006) Principles of time delayed feedback control. In: Schuster HG (ed) Handbook of Chaos control. Wiley-VCH Verlag GmbH & Co, KGaA, pp 21–41

    Chapter  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE International Conference on Neural Networks, November/December 1995, pp 1942–1948

  • Kominkova Oplatkova Z, Senkerik R, Zelinka I, Pluhacek M (2013) Analytic programming in the task of evolutionary synthesis of a controller for high order oscillations stabilization of discrete chaotic systems. Comput Math Appl 66(2):177–189

    Article  MathSciNet  Google Scholar 

  • Kordík P, Koutník J, Drchal J, Kovářík O, Čepek M, Šnorek M (2010) Meta-learning approach to neural network optimization. Neural Netw 23(4):568–582

    Article  Google Scholar 

  • LdS Coelho, Mariani VC (2009) A novel chaotic particle swarm optimization approach using Hènon map and implicit filtering local search for economic load dispatch. Chaos Solitons Fractals 39(2):510–518

    Article  Google Scholar 

  • LdS Coelho, Grebogi RB (2010) Chaotic synchronization using PID control combined with population based incremental learning algorithm. Expert Syst Appl 37(7):5347–5352

    Article  Google Scholar 

  • LdS Coelho, Mariani VC (2012) Firefly algorithm approach based on chaotic Tinkerbell map applied to multivariable PID controller tuning. Comput Math Appl 64(8):2371–2382

    Article  MathSciNet  Google Scholar 

  • May RMC (2001) Stability and complexity in model ecosystems. Princeton University Press, Princeton

  • Oplatkova Z (2010) Metaevolution: synthesis of optimization algorithms by means of symbolic regression and evolutionary algorithms. Lambert Academic Publishing, Saarbrücken, Germany

  • Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64(11):1196–1199

    Article  MATH  MathSciNet  Google Scholar 

  • Pluhacek M, Senkerik R, Davendra D, Zelinka I (2013) On the behavior and performance of chaos driven PSO algorithm with inertia weight. Comput Math Appl 66(2):122–134

    Article  MathSciNet  Google Scholar 

  • Pluhacek M, Senkerik R, Zelinka I (2014) Multiple choice strategy based PSO algorithm with chaotic decision making, a preliminary study. In: Herrero Á, Baruque B, Klett F et al. (eds) International Joint Conference SOCO’13-CISIS’13-ICEUTE’13, vol 239. Advances in intelligent systems and computing. Springer International Publishing, pp 21–30

  • Pluhacek M, Senkerik R, Zelinka I, Davendra D (2013) Chaos PSO algorithm driven alternately by two different chaotic maps—an initial study. In: 2013 IEEE Congress on Evolutionary Computation (CEC), 2013, pp 2444–2449

  • Price KV (1999) An introduction to differential evolution. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimization. McGraw-Hill Ltd, London

  • Price KV, Storn RM, Lampinen JA (2005) Differential evolution—a practical approach to global optimization., Natural computing series. Springer, Berlin Heidelberg

  • Pyragas K (1992) Continuous control of chaos by self-controlling feedback. Phys Lett A 170(6):421–428

    Google Scholar 

  • Pyragas K (1995) Control of chaos via extended delay feedback. Phys Lett A 206(56):323–330

    Article  MATH  MathSciNet  Google Scholar 

  • Reeves CR (1993) Modern heuristic techniques for combinatorial problems. Halsted Press, New York

  • Richter H, Reinschke KJ (2000) Optimization of local control of chaos by an evolutionary algorithm. Phys D: Nonlinear Phenomena 144(34):309–334

    Article  MATH  MathSciNet  Google Scholar 

  • Sadeghpour M, Salarieh H, Vossoughi G, Alasty A (2011) Multi-variable control of chaos using PSO-based minimum entropy control. Commun Nonlinear Sci Numer Simul 16(6):2397–2404

    Article  MATH  MathSciNet  Google Scholar 

  • Senkerik R, Zelinka I, Davendra D, Oplatkova Z (2010) Utilization of SOMA and differential evolution for robust stabilization of chaotic Logistic equation. Comput Math Appl 60(4):1026–1037

    Article  MATH  MathSciNet  Google Scholar 

  • Senkerik R, Oplatkova Z, Zelinka I, Davendra D (2013) Synthesis of feedback controller for three selected chaotic systems by means of evolutionary techniques: Analytic programming. Math Comput Model 57(12):57–67

    Article  MathSciNet  Google Scholar 

  • Senkerik R, Davendra D, Zelinka I, Pluhacek M, Oplatkova Z (2012) An investigation on the chaos driven differential evolution: an initial study. In: 5th International Conference on bioinspired optimization methods and their applications, BIOMA 2012, pp 185–194

  • Senkerik R, Zelinka I, Oplatkova Z (2009) Optimal control of evolutionary synthesized chaotic system. In: 15th International Conference on Soft Computing—Mendel 2009, pp 220–227

  • Shirazi MJ, Vatankhah R, Boroushaki M, Salarieh H, Alasty A (2012) Application of particle swarm optimization in chaos synchronization in noisy environment in presence of unknown parameter uncertainty. Commun Nonlinear Sci Numer Simul 17(2):742–753

    Article  MathSciNet  Google Scholar 

  • Smith JE, Fogarty TC (1997) Operator and parameter adaptation in genetic algorithms. Soft Comput 1(2):81–87

    Article  Google Scholar 

  • Sprott JC (2003) Chaos and time-series analysis. Oxford University Press, Oxford

  • Storn R, Price K (1997) Differential evolution. A simple and efficient heuristic for global optimization over continuous spaces. J Glob Opt 11(4):341–359

    Article  MATH  MathSciNet  Google Scholar 

  • Zelinka I (2004) SOMA—Self-organizing migrating algorithm. New optimization techniques in engineering, vol 141., Studies in fuzziness and soft computing. Springer, Berlin Heidelberg, pp 167–217

  • Zelinka I, Chen G, Celikovsky S (2008) Chaos synthesis by means of evolutionary algorithms. Int J Bifurcation Chaos 18(04):911–942

    Article  MATH  MathSciNet  Google Scholar 

  • Zelinka I (2009) Real-time deterministic chaos control by means of selected evolutionary techniques. Eng Appl Artif Intel 22(2):283–297

    Article  Google Scholar 

  • Zelinka I, Senkerik R, Navratil E (2009) Investigation on evolutionary optimization of chaos control. Chaos Solitons Fractals 40(1):111–129

    Article  MATH  Google Scholar 

  • Zelinka I, Raidl A (2010) Evolutionary synchronization of chaotic systems. In: Zelinka I, Celikovsky S, Richter H, Chen G (eds) Evolutionary algorithms and chaotic systems, vol 267., Studies in computational intelligence. Springer, Berlin Heidelberg, pp 385–407

  • Zelinka I, Chadli M, Davendra D, Senkerik R, Jasek R (2013) An investigation on evolutionary reconstruction of continuous chaotic systems. Math Computer Model 57(12):2–15

    Article  MathSciNet  Google Scholar 

  • Zelinka I, Davendra D, Senkerik R, Jasek R, Oplatkova Z (2011) Analytical programming—a novel approach for evolutionary synthesis of symbolic structures. In: Kita E (ed) Evolutionary algorithms. InTech Europe, Rijeka

Download references

Acknowledgments

This work was supported by European Regional Development Fund under the project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089, by Grant Agency of the Czech Republic—GACR P103/13/08195S, by the Development of human resources in research and development of latest soft computing methods and their application in practice project, reg. no. CZ.1.07/2.3.00/20.0072 funded by Operational Programme Education for Competitiveness, co-financed by ESF and state budget of the Czech Republic, partially supported by Grant of SGS No. SP2013/114, VSB—Technical University of Ostrava; by the Technology Agency of the Czech Republic under the Project TE01020197, and by Internal Grant Agency of Tomas Bata University under the project No. IGA/FAI/2013/012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Senkerik.

Additional information

Communicated by I. Zelinka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senkerik, R., Kominkova Oplatkova, Z., Zelinka, I. et al. Utilization of analytic programming for the evolutionary synthesis of the robust multi-chaotic controller for selected sets of discrete chaotic systems . Soft Comput 18, 651–668 (2014). https://doi.org/10.1007/s00500-014-1220-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-014-1220-1

Keywords

Navigation