Skip to main content
Log in

The statistical inferences of fuzzy regression based on bootstrap techniques

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, we estimate the parameters of fuzzy regression models and investigate a statistical inferences with crisp inputs and fuzzy outputs for each \(\alpha \)-cut. The proposed approaches of statistical inferences are fuzzy least squares (FLS) method and bootstrap technique. FLS is constructed on the basis of minimizing the sum of square of the total difference between observed and estimated outputs. Numerical examples are illustrated to perform the hypotheses test and to provide the percentile confidence regions by proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akbari MG, Mohammadalizadeh R, Rezaei M (2012) Bootstrap statistical inference about the regression coefficients based on fuzzy data. Int J Fuzzy Syst 14:549–556

    MathSciNet  Google Scholar 

  • Arnold BF (1995) Statistical tests optimally meeting certain fuzzy requirements on the power function and on the sample size. Fuzzy Sets Syst 75:365–372

    Article  MATH  Google Scholar 

  • Casals MR, Gil MR, Gil P (1986) On the use of Zadeh’s probabilistic definition for testing statistical hypotheses from fuzzy information. Fuzzy Sets Syst 20:175–190

    Article  MATH  MathSciNet  Google Scholar 

  • Chang P-T, Lee ES (1994) Fuzzy least absolute deviations regression and the conflicting trends in fuzzy parameters. Comput Math Appl 28:89–101

    Article  MATH  MathSciNet  Google Scholar 

  • Efron B (1982) The jackknife, the bootstrap, and other resampling plans, vol 38. Society of Industrial and Applied Mathematics CBMS-NSF Monographs, Philadelphia. ISBN 0898711797

  • Feng Y-H, Hu L-J, Shu H-S (2001) The variance and covariance of fuzzy random variables and their applications. Fuzzy Sets Syst 120:487–497

    Article  MATH  MathSciNet  Google Scholar 

  • Grzegorzewski P (2000) Testing statistical hypotheses with vague data. Fuzzy Sets Syst 112:501–510

    Article  MATH  MathSciNet  Google Scholar 

  • Hu L, Wu R, Shao S (2002) Analysis of dynamical systems whose inputs are fuzzy stochastic processes. Fuzzy Sets Syst 129:111–118

    Article  MATH  MathSciNet  Google Scholar 

  • Kaufmann A (1975) Introduction to the theory of fuzzy subsets, vol 1. Academic Press, New York

    MATH  Google Scholar 

  • Kim SJ, Seo IY (2012) A clustering approach to wind power prediction based on support vector regression. Int J Fuzzy Log Intell Syst 12:108–112

    Article  Google Scholar 

  • Körner R (1997) On the variance of fuzzy random variables. Fuzzy Sets Syst 92:83–93

    Article  MATH  Google Scholar 

  • Kruse R, Meyer KD (1987) Statistics with vague data. D. Reidel Publishing Company, Dortrecht

    Book  MATH  Google Scholar 

  • Kwakernaak H (1978) Fuzzy random variables, part I: definitions and theorems. Inf Sci 15:1–15

    Article  MATH  MathSciNet  Google Scholar 

  • Kwakernaak H (1979) Fuzzy random variables, part II: algorithms and examples for the discrete case. Inf Sci 17:253–278

    Article  MATH  MathSciNet  Google Scholar 

  • Lin JG, Zhuang QY, Huang C (2012) Fuzzy statistical analysis of multiple regression with crisp and fuzzy covariates and applications in analyzing economic data of China. Comput Econ 39:29–49

    Article  MATH  Google Scholar 

  • Maria BF, Renato C, Gil GR (2013) Bootstrap confidence intervals for the parameters of a linear regression model with fuzzy random variables. Towards Adv Data Anal Comb Soft Comput Stat 285: 33–42

  • Montenegro M, Colubi A, Casals MR, Gil MA (2004) Asymptotic and bootstrap techniques for testing the expected value of a fuzzy random variable. Metrika 59:31–49

  • Puri MD, Ralescu D (1986) Fuzzy random variables. J Math Anal Appl 114:409–422

  • Stefanini L (2010) A generalization of Hukuhara difference for interval and fuzzy arithmetic. Fuzzy Sets Syst 161:1564–1576

    Article  MATH  MathSciNet  Google Scholar 

  • Tanaka H, Uejima S, Asai K (1982) Linear regression analysis with fuzzy model. IEEE Syst Trans Syst Man Cybern SMC-2:903–907

  • Wu CFJ (1986) Iackknife, bootstrap and other resampling methods in regression analysis. Ann Stat 14(4):1261–1295

    Article  MATH  Google Scholar 

  • Wu H-C (2005) Statistical hypotheses testing for fuzzy data. Inf Sci 175:30–56

    Article  MATH  Google Scholar 

  • Wu H-C (2007) Analysis of variance for fuzzy data. Int J Syst Sci 38:235–246

    Article  MATH  Google Scholar 

  • Zadeh LA (1975a) The concept of linguistic variable and its application to approximate reasoning I. Inf Sci 8:199–249

  • Zadeh LA (1975b) The concept of linguistic variable and its application to approximate reasoning II. Inf Sci 8:301–357

    Article  MATH  MathSciNet  Google Scholar 

  • Zadeh LA (1975c) The concept of linguistic variable and its application to approximate reasoning III. Inf Sci 9:43–80

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (Grant number: NRF-2014R1A1A2002032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Hoe Choi.

Additional information

Communicated by J.-W. Jung.

Appendix

Appendix

To prove Eq. (6), the following four cases apply according to endpoints of \({\hat{y}}_{i_{\alpha }}\), \({\hat{y}}_{i_{\alpha }}^{(b)}\).

  1. 1.

    \({\hat{y}}_{i_{\alpha }}^{L} < {\hat{y}}_{i_{\alpha }}^{U}\) and \({\hat{y}}_{i_{\alpha }}^{(b)L} < {\hat{y}}_{i_{\alpha }}^{(b)U}\).

  2. 2.

    \({\hat{y}}_{i_{\alpha }}^{L}>{\hat{y}}_{i_{\alpha }}^{U}\) and \({\hat{y}}_{i_{\alpha }}^{(b)L} < {\hat{y}}_{i_{\alpha }}^{(b)U}\).

  3. 3.

    \({\hat{y}}_{i_{\alpha }}^{L}<{\hat{y}}_{i_{\alpha }}^{U}\) and \({\hat{y}}_{i_{\alpha }}^{(b)L} > {\hat{y}}_{i_{\alpha }}^{(b)U}\).

  4. 4.

    \({\hat{y}}_{i_{\alpha }}^{L}>{\hat{y}}_{i_{\alpha }}^{U}\) and \({\hat{y}}_{i_{\alpha }}^{(b)L} > {\hat{y}}_{i_{\alpha }}^{(b)U}\).

In Case 1, in the given conditions, it follows that

\({\hat{y}}_{i_{\alpha }}^{-}={\hat{y}}_{i_{\alpha }}^{L}\) and \({\hat{y}}_{i_{\alpha }}^{+}={\hat{y}}_{i_{\alpha }}^{U}\) so that \({\hat{y}}_{i_{\alpha }}^{(b)-}={\hat{y}}_{i_{\alpha }}^{L}+e_{i_{\alpha }}^{(b)-}\) and \({\hat{y}}_{i_{\alpha }}^{(b)+}={\hat{y}}_{i_{\alpha }}^{U}+e_{i_{\alpha }}^{(b)+}\).

In Case 2, in the given conditions, it follows that

\({\hat{y}}_{i_{\alpha }}^{-}={\hat{y}}_{i_{\alpha }}^{U}\) and \({\hat{y}}_{i_{\alpha }}^{+}={\hat{y}}_{i_{\alpha }}^{L}\) so that \({\hat{y}}_{i_{\alpha }}^{(b)-}={\hat{y}}_{i_{\alpha }}^{U}+e_{i_{\alpha }}^{(b)-}\) and

\({\hat{y}}_{i_{\alpha }}^{(b)+}={\hat{y}}_{i_{\alpha }}^{L}+e_{i_{\alpha }}^{(b)+}\).

In Cases 1, 2, taking \({\hat{y}}_{i_{\alpha }}^{(b)}\ominus _g {\hat{y}}_{i_{\alpha }}\), produces, \({\hat{y}}_{i_{\alpha }}^{(b)-}-{\hat{y}}_{i_{\alpha }}^{-}=e_{i_{\alpha }}^{(b)-}\) and \({\hat{y}}_{i_{\alpha }}^{(b)+}-{\hat{y}}_{i_{\alpha }}^{+}=e_{i_{\alpha }}^{(b)+}\). Therefore

$$\begin{aligned}&E\big [ \big \{ {\hat{\beta }}_{1_{\alpha }}^{(b)} \ominus _g {\hat{\beta }}_{1_{\alpha }} \big \} \big ]\\&\quad =E \Bigg [\frac{\sum _{i=1}^{n}(x_i -{\bar{x}})e_{i_{\alpha }}^{(b)-} }{\sum _{i=1}^{n}(x_i -{\bar{x}})^2},\frac{\sum _{i=1}^{n}(x_i -{\bar{x}}) e_{i_{\alpha }}^{(b)+}}{\sum _{i=1}^{n}(x_i -{\bar{x}})^2} \Bigg ]\\&\quad =\left\{ \begin{array}{ll} \frac{\sum _{i=1}^{n}(x_i -{\bar{x}})}{\sum _{i=1}^{n}(x_i -{\bar{x}})^2} E \Big [e_{i_{\alpha }}^{(b)-},\quad e_{i_{\alpha }}^{(b)+}\Big ] &{}\quad \text {if}\ x_i \ge {\bar{x}}, \\ \frac{\sum _{i=1}^{n}(x_i -{\bar{x}})}{\sum _{i=1}^{n}(x_i -{\bar{x}})^2}\Big \{ \{0\} \ominus _g E \Big [-e_{i_{\alpha }}^{(b)+},-e_{i_{\alpha }}^{(b)-}\Big ] \Big \}&{}\quad \text {if}\ x_i <{\bar{x}} \end{array}\right. \\&\quad =\{0\}. \end{aligned}$$

The intercept coefficient is derived in a similar way.

$$\begin{aligned}&E\big [ \big \{ {\hat{\beta }}_{0_{\alpha }}^{(b)} \ominus _g {\hat{\beta }}_{0_{\alpha }} \big \} \big ] \\&\quad =E \bigg [ {\bar{e}}_{i_{\alpha }}^{(b)-}- \big ({\hat{\beta }}_{1_{\alpha }}^{(b)-} - {\hat{\beta }}_{1_{\alpha }}^- \big ){\bar{x}},\quad {\bar{e}}_{i_{\alpha }}^{(b)+} - \big ({\hat{\beta }}_{1_{\alpha }}^{(b)+} - {\hat{\beta }}_{1_{\alpha }}^+ \big ){\bar{x}}\bigg ]\\&\quad =E\bigg [\Big [{\bar{e}}_{i_{\alpha }}^{(b)-}, {\bar{e}}_{i_{\alpha }}^{(b)+} \Big ]+\bigg \{ \big \{ 0\big \} \ominus _g \Big [- {\hat{\beta }}_{1_{\alpha }}^{(b)-}+{\hat{\beta }}_{1_{\alpha }}^{-}, - {\hat{\beta }}_{1_{\alpha }}^{(b)+}+{\hat{\beta }}_{1_{\alpha }}^{+} \Big ]{\bar{x}} \bigg \}\bigg ] \\&\quad =E\Big [{\bar{e}}_{i_{\alpha }}^{(b)}\Big ] \ominus _g E\Big [ \big \{ {\hat{\beta }}_{0_{\alpha }}^{(b)} \ominus _g {\hat{\beta }}_{0_{\alpha }} \big \} \Big ]{\bar{x}}=\big \{0\big \} \end{aligned}$$

In Case 3. In the given conditions, it follows that

\({\hat{y}}_{i_{\alpha }}^{-}={\hat{y}}_{i_{\alpha }}^{L}\) and \({\hat{y}}_{i_{\alpha }}^{+}={\hat{y}}_{i_{\alpha }}^{U}\) so that \({\hat{y}}_{i_{\alpha }}^{(b)-}={\hat{y}}_{i_{\alpha }}^{U}+e_{i_{\alpha }}^{(b)+}\) and \(\quad {\hat{y}}_{i_{\alpha }}^{(b)+}={\hat{y}}_{i_{\alpha }}^{L}+e_{i_{\alpha }}^{(b)-}\).

In Case 4. In the given conditions, it follows that

\({\hat{y}}_{i_{\alpha }}^{-}={\hat{y}}_{i_{\alpha }}^{U}\) and \({\hat{y}}_{i_{\alpha }}^{+}={\hat{y}}_{i_{\alpha }}^{L}\) so that \({\hat{y}}_{i_{\alpha }}^{(b)-}={\hat{y}}_{i_{\alpha }}^{L}+e_{i_{\alpha }}^{(b)+}\) and \(\quad {\hat{y}}_{i_{\alpha }}^{(b)+}={\hat{y}}_{i_{\alpha }}^{U}+e_{i_{\alpha }}^{(b)-}\).

From the conditions, Case 3 and Case 4 impossible.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, WJ., Jung, H.Y., Yoon, J.H. et al. The statistical inferences of fuzzy regression based on bootstrap techniques. Soft Comput 19, 883–890 (2015). https://doi.org/10.1007/s00500-014-1415-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-014-1415-5

Keywords

Navigation