Skip to main content
Log in

Interactive preferences in multiobjective ant colony optimisation for assembly line balancing

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this contribution, we propose an interactive multicriteria optimisation framework for the time and space assembly line balancing problem. The framework allows decision maker interaction by means of reference points to obtain the most interesting non-dominated solutions. The principal components of the framework are the \(g\)-dominance preference scheme and a state-of-the-art memetic multiobjective ant colony optimisation approach. In addition, the framework includes a novel adaptive multi-colony mechanism to be able to handle the preferences in an interactive way. Results show how the multiobjective framework can interactively obtain the most useful solutions with higher convergence than previous a priori methods. The experimentation also makes use of original data of the Nissan Pathfinder engine and practical bounds to define industrially feasible solutions in a set of scenarios. By solving the problem in these scenarios, we show the search guidance advantages of using an interactive multiobjective ant colony optimisation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Originally, this TSALBP variant is referred as TSALBP-1/3 (Bautista and Pereira 2007).

  2. Please note that the space division and, therefore, the ants’ thresholds depend on the first Pareto front approximation and this front can vary among the 20 runs. For simplicity, we refer here to the most common thresholds of the runs.

References

  • Barán B, Schaerer M (2003) A multiobjective ant colony system for vehicle routing problem with time windows. In: 21st IASTED international conference, Innsbruck, pp 97–102

  • Battaïa O, Dolgui A (2013) A taxonomy of line balancing problems and their solution approaches. Int J Prod Econ 142(2):259–277

    Article  Google Scholar 

  • Bautista J, Pereira J (2007) Ant algorithms for a time and space constrained assembly line balancing problem. Eur J Oper Res 177(3):2016–2032

    Article  MATH  Google Scholar 

  • Baybars I (1986) A survey of exact algorithms for the simple assembly line balancing problem. Manag Sci 32(8):909–932

    Article  MATH  MathSciNet  Google Scholar 

  • Said Ben L, Bechikh S, Ghédira K (2010) The r-dominance: a new dominance relation for interactive evolutionary multicriteria decision making. IEEE Trans Evol Comput 14(5):801–818

  • Boysen N, Fliedner M, Scholl A (2007) A classification of assembly line balancing problems. Eur J Oper Res 183(2):674–693

    Article  MATH  MathSciNet  Google Scholar 

  • Branke J, Deb K, Miettinen K, Slowinski R (eds) (2008) Multiobjective optimization, interactive and evolutionary approaches. Lecture notes in computer science, vol 5252. Springer, Berlin

  • Chica M, Cordón O, Damas S (2011) An advanced multi-objective genetic algorithm design for the time and space assembly line balancing problem. Comput Ind Eng 61(1):103–117

    Article  Google Scholar 

  • Chica M, Cordón O, Damas S, Bautista J (2010) Multiobjective, constructive heuristics for the 1/3 variant of the time and space assembly line balancing problem: ACO and random greedy search. Inf Sci 180:3465–3487

    Article  Google Scholar 

  • Chica M, Cordón O, Damas S, Bautista J (2010) A multiobjective GRASP for the 1/3 variant of the time and space assembly line balancing problem. Trends Appl Intell Syst Lect Notes Artif Intell 6098:656–665

  • Chica M, Cordón O, Damas S, Bautista J (2011) Including different kinds of preferences in a multi-objective ant algorithm for time and space assembly line balancing on different nissan scenarios. Exp Syst Appl 38:709–720

    Article  Google Scholar 

  • Chica M, Cordón O, Damas S, Bautista J (2012) Multiobjective memetic algorithms for time and space assembly line balancing. Eng Appl Artif Intell 25(2):254–273

    Article  Google Scholar 

  • Chica M, Cordón O, Damas S, Bautista J (2013) A robustness information and visualization model for time and space assembly line balancing under uncertain demand. Int J Prod Econ 145:761–772

    Article  Google Scholar 

  • Coello CA, Lamont GB, Van Veldhuizen DA (2007) Evolutionary algorithms for solving multi-objective problems, 2nd edn. Springer, Berlin

  • Deb K (1999) Solving goal programming problems using multi-objective genetic algorithms. In: IEEE congress on evolutionary computation (CEC 99). Washington (USA), pp 77–84

  • Deb K, Sinha A, Korhonen PJ, Wallenius J (2010) An interactive evolutionary multiobjective optimization method based on progressively approximated value functions. IEEE Trans Evol Comput 14(5):723–739

  • Dorigo M, Gambardella L (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66

    Article  Google Scholar 

  • Figueira JR, Liefooghe A, Talbi EG, Wierzbicki AP (2010) A parallel multiple reference point approach for multi-objective optimization. Eur J Oper Res 205(2):390–400

    Article  MATH  MathSciNet  Google Scholar 

  • Fonseca CM, Fleming PJ (1996) On the performance assessment and comparison of stochastic multiobjective optimizers. In: Proceedings of the 4th international conference on parallel problem solving from nature (PPSN). Lecture notes in computer science, vol 1141. Berlin, Germany, pp 584–593

  • Gandibleux X, Freville A (2000) Tabu search based procedure for solving the 0–1 multiobjective knapsack problem: the two objectives case. J Heurist 6(3):361–383

    Article  MATH  Google Scholar 

  • Greiner D, Galván B, Emperador JM, Méndez M, Winter G (2011) Introducing reference point using g-dominance in optimum design considering uncertainties: an application in structural engineering. In: Evolutionary multi-criteria optimization. Lecture notes in computer science, vol 6576. Springer, Berlin, pp 389–403

  • Iredi S, Merkle D, Middendorf M (2001) Bi-criterion optimization with multi colony ant algorithms. In: First intl. conference on evolutionary multi-criterion optimization (EMO’01). Springer, Berlin, pp 359–372

  • Jaszkiewicz A (2002) Genetic local search for multiple objective combinatorial optimization. Eur J Oper Res 137(1):50–71

    Article  MATH  MathSciNet  Google Scholar 

  • Kamalian R, Takagi H, Agonino AM (2004) Optimized design of MEMS by evolutionary multi-objective optimization with interactive evolutionary computation. Springer, Berlin, pp 1030–1041

  • Molina J, Santana LV, Hernández-Díaz AG, Coello CA, Caballero R (2009) g-dominance: reference point based dominance for multiobjective metaheuristics. Eur J Oper Res 197(2):17–24

    Article  MATH  Google Scholar 

  • Phelps S, Koksalan M (2003) An interactive evolutionary metaheuristic for multiobjective combinatorial optimization. Manag Sci 49(12):1726–1738

    Article  MATH  Google Scholar 

  • Rada-Vilela J, Chica M, Cordón O, Damas S (2013) A comparative study of multi-objective ant colony optimization algorithms for the time and space assembly line balancing problem. Appl Soft Comput 13(11):4370–4382

    Article  Google Scholar 

  • Rodríguez B, Molina J, Pérez F, Caballero R (2012) Interactive design of personalised tourism routes. Tour Manag 33(4):926–940

    Article  Google Scholar 

  • Scholl A, Becker C (2006) State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. Eur J Oper Res 168(3):666–693

    Article  MATH  MathSciNet  Google Scholar 

  • Scholl A, Klein C (1999) Balancing assembly lines effectively—a computational comparison. Eur J Oper Res 114(1):50–58

    Article  MATH  Google Scholar 

  • Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Chica.

Additional information

Communicated by V. Loia.

This work has been supported by Ministerio de Economía y Competitividad under project SOCOVIFI2 (TIN2012-38525-C02-01 and TIN2012-38525-C02-02), and under PROTHIUS-III: DPI2010-16759, both including EDRF funding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chica, M., Cordón, Ó., Damas, S. et al. Interactive preferences in multiobjective ant colony optimisation for assembly line balancing. Soft Comput 19, 2891–2903 (2015). https://doi.org/10.1007/s00500-014-1451-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-014-1451-1

Keywords

Navigation