Abstract
This paper presents a novel denoising approach based on smoothing linear and nonlinear filters combined with an optimization algorithm. The optimization algorithm used was cuckoo search algorithm and is employed to determine the optimal sequence of filters for each kind of noise. Noises that would be eliminated form images using the proposed approach including Gaussian, speckle, and salt and pepper noise. The denoising behaviour of nonlinear filters and wavelet shrinkage threshold methods have also been analysed and compared with the proposed approach. Results show the robustness of the proposed filter when compared with the state-of-the-art methods in terms of peak signal-to-noise ratio and image quality index. Furthermore, a comparative analysis is provided between the said optimization algorithm and the genetic algorithm.
Access this article
Rent this article via DeepDyve
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-014-1552-x/MediaObjects/500_2014_1552_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-014-1552-x/MediaObjects/500_2014_1552_Fig2_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-014-1552-x/MediaObjects/500_2014_1552_Fig3_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-014-1552-x/MediaObjects/500_2014_1552_Fig4_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-014-1552-x/MediaObjects/500_2014_1552_Fig5_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-014-1552-x/MediaObjects/500_2014_1552_Fig6_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-014-1552-x/MediaObjects/500_2014_1552_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-014-1552-x/MediaObjects/500_2014_1552_Fig8_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-014-1552-x/MediaObjects/500_2014_1552_Fig9_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-014-1552-x/MediaObjects/500_2014_1552_Fig10_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-014-1552-x/MediaObjects/500_2014_1552_Fig11_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-014-1552-x/MediaObjects/500_2014_1552_Fig12_HTML.jpg)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- AI:
-
Artificial intelligence
- CSA:
-
Cuckoo search algorithm
- db4:
-
Daubechies-4 wavelet
- IQI:
-
Image quality index
- GA:
-
Genetic algorithms
- PSO:
-
Particle swarm optimization
- PSNR:
-
Peak signal-to-noise ratio
- SNR:
-
Signal-to-noise ratio
References
Anand CS, Sahambi JS (2008) MRI denoising using bilateral filter in redundant wavelet domain. In: IEEE conference
Bai R (2008) Wavelet shrinkage based image denoising using soft computing. Dissertation, University of Waterloo, Waterloo, Ontario
Benes R, Riha K (2012) Medical image denoising By improved Kuan filter. Digital Image Process Comput Graph, 10(1)
Chandrasekaran K, Simon Sishaj P (2012) Multi-objective unit commitment problem using Cuckoo search Lagrangian method. Int J Eng Sci Technol 4(2):89–105
Chang SG, Bin Yu, Vetterli M (2000) Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process 9(9):1532–1546
Chitroub S (2003) Principal component analysis by neural network. Remote sensing images compression and enhancement. IEEE, ICECS, Application
Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image restoration by sparse 3D transform-domain collaborative filtering. IEEE Trans Imag Process 16(8):2080–2095
Dangeti S (2003) Denoising techniques—a Comparison. Dissertion, Andhra University College of Engineering, Visakhapatnam
Donoho DL (1992) De-noising by soft-thresholding. Dissertation, Stanford University, California
Donoho DL, Johnstone IM (1995) Adapting to unknown smoothness via wavelet shrinkage. J Am Stat Assoc 90(432):1200–1224
Ernst B, Bloh M, Seume Jörg R, González AG (2012) Implementation of the “Cuckoo Search” Algorithm to Optimize the Design of Wind Turbine Rotor Blades
Gupta S, Kumar R, Panda SK (2010) A genetic algorithm based sequential hybrid filter for image smoothing. Int J Signal Image Process 1(4):242–248
Ilango G, Marudhachalam R (2011) New hybrid filtering techniques for removal of Gaussian noise from medical images. ARPN J Eng Appl Sci 6(2):15–18
Kumar BKS (2013) Image denoising based on gaussian/bilateral filter and its method noise thresholding. Springer-Verlag London. SIViP 7:1159–1172. doi:10.1007/s11760-012-0372-7
Lakshmi B, Kavita P, Ramu K (2012) A parallel model for noise reduction of images using smoothing filters and image averaging. Indian J Comput Sci Eng (IJCSE) 2(6):837–844
Laparra V, Guti’errez J, Camps-Valls G, Malo J (2010) Image denoising with kernels based on natural image relations. J Mach Learn Res 11:873–903
Layeb A (2011) A novel quantum inspired cuckoo search for Knapsack problems. Int J Bio Inspir Comput, 3(5):297–305
Chen Lixia, LIU Yanxiong, LIU Xujiao, WANG Xuewen (2013) A novel model to remove multiplicative noise. J Comput Inf Syst 9(11):4223–4229
Luisier F, Blu T, Unser M (2010) Image denoising in mixed poisson-Gaussian noise. IEEE Trans Imag Process 20(3):696–708
Matlab 6.1, Image processing toolbox. http://www.mathworks.com/access/helpdesk/help/toolbox/images/images.shtml
Mohapatra S (2008) Development of impulsive noise detection schemes for selective filtering in images. Dissertation, National Institute of Technology Rourkela, Orissa
Mohapatra S, Sa KP, Majhi B (2007) Impulsive noise removal image enhancement technique. In: 6th WSEAS international conference on circuits, systems, electronics, control and signal processing (CSECS-2007), Cairo, Egypt, pp 317–322
Portilla J, Strela V, J. Martin W, Simoncelli EP (2003) Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans Image Process, 12(11):1338–1351
Pragada S, Sivaswamy J (2008) Image de-noising using matched biorthogonal wavelets. In: 6th Indian conference on computer vision, IEEE graphics and image processing
Pzurica A, Philips W, Lemahieu I, Acheroy M (2003) A versatile wavelet domain noise filtration technique for medical imaging. IEEE Trans Med Imaging 22(3):323–331
Sharma D (2008) A comparative analysis of thresholding techniques used in image denoising through wavelets. Dissertation, Thapar university, Patiala
Roy S, Sinha N, Sen AK (2010) A new hybrid image denoising method. Int J Inf Technol Knowl Manag 2(2):491–497
Syberfeldt A, Lidberg S (2012) Real-world simulation-based manufacturing optimization using Cuckoo search. In: Laroque C, Himmelspach J, Pasupathy R, Rose O, Uhrmacher AM (eds) Proceedings of the 2012 winter simulation conference
Tayel MB, Abdou MA, Elbagoury AM (2011) An efficient thresholding neural network technique for high noise densities environments. Int J Image Process (IJIP) 5(4):403–416
Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color Images. In: Proceedings of the 1998 IEEE international conference on computer vision, Bombay, India
The USC SIPI database, USC Viterbi School of Engineering, University of Southern California, United States
Ville Van De D, Nachtegael M, Weken Van der D et al (2003) Noise reduction by fuzzy image filtering. IEEE Trans Fuzzy Syst 11(4):429–436
Velaga S, Kovvada S (2012) Efficient techniques for denoising of highly corrupted impulse noise images. Int J Soft Comput Eng, 2(4):253–257
Yang X-S, Deb S (2009) Cuckoo search via Levy flights. In: Proceedings of world congress on nature and biologically inspired computing NaBIC (2009) India. IEEE Publications, USA, pp 210–214
Yang X-S, Deb S (2014) Cuckoo search: recent advances and applications. Neural Comput Appl. doi:10.1007/s00521-013-1367-1
Yang XS (2010) Engineering optimisation: an introduction with metaheuristic applications. Wiley, New York
Zhang M, Gunturk BK (2008) Multiresolution bilateral filtering for image denoising. IEEE Trans Image Process, 17(12):2324–2333
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by V. Loia.
Rights and permissions
About this article
Cite this article
Malik, M., Ahsan, F. & Mohsin, S. Adaptive image denoising using cuckoo algorithm. Soft Comput 20, 925–938 (2016). https://doi.org/10.1007/s00500-014-1552-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-014-1552-x