Abstract
Harmony search (HS) and biogeography-based optimization (BBO) are two metaheuristic optimization methods which have demonstrated effectiveness on a wide variety of optimization problems. The paper proposes a new hybrid biogeographic harmony search (BHS) method, which integrates the blended migration operator of BBO with HS to enrich harmony diversity, and thus achieves a much better balance between exploration and exploitation. We then apply the BHS method to an emergency air transportation problem, and show that the proposed method is very competitive with the state-of-the-art BBO, HS, and other comparative algorithms on a set of problem instances from real-world disaster relief operations in China.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-014-1556-6/MediaObjects/500_2014_1556_Fig1_HTML.gif)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Al-Betar MA, Khader AT (2012) A harmony search algorithm for university course timetabling. Ann Oper Res 194(1):3–31. doi:10.1007/s10479-010-0769-z
Basturk B, Karaboga D (2006) An artificial bee colony (abc) algorithm for numeric function optimization. In: IEEE swarm intelligence symposium, pp 12–14
Beyer HG, Schwefel HP (2002) Evolution strategies—a comprehensive introduction. Nat Comput 1(1):3–52. doi:10.1023/A:1015059928466
Bhattacharya A, Chattopadhyay P (2010) Biogeography-based optimization for different economic load dispatch problems. IEEE Trans Power Syst 25(2):1064–1077. doi:10.1109/TPWRS.2009.2034525
Boussaïd I, Chatterjee A, Siarry P, Ahmed-Nacer M (2011) Two-stage update biogeography-based optimization using differential evolution algorithm (DBBO). Comput Oper Res 38(8):1188–1198. doi:10.1016/j.cor.2010.11.004
Boussaïd I, Chatterjee A, Siarry P, Ahmed-Nacer M (2012) Biogeography-based optimization for constrained optimization problems. Comput Oper Res 39(12):3293–3304. doi:10.1016/j.cor.2012.04.012
Chakraborty P, Roy GG, Das S, Jain D, Abraham A (2009) An improved harmony search algorithm with differential mutation operator. Fundam Inform 95(4):401–426. doi:10.3233/FI-2009-157
Cheng MY, Huang KY, Chen HM (2012) Dynamic guiding particle swarm optimization with embedded chaotic search for solving multidimensional problems. Optim Lett 6(4):719–729. doi:10.1007/s11590-011-0297-z
Degertekin S (2008) Optimum design of steel frames using harmony search algorithm. Struct Multidiscip Optim 36(4):393–401. doi:10.1007/s00158-007-0177-4
Du D, Simon D, Ergezer M (2009) Biogeography-based optimization combined with evolutionary strategy and immigration refusal. In: IEEE international conference on systems, man and cybernetics, pp 997–1002. doi:10.1109/ICSMC.2009.5346055
Forsati R, Haghighat A, Mahdavi M (2008) Harmony search based algorithms for bandwidth-delay-constrained least-cost multicast routing. Comput Commun 31(10):2505–2519. doi:10.1016/j.comcom.2008.03.019
Gao X, Wang X, Ovaska S (2010) A harmony search-based differential evolution method. In: IEEE 13th international conference on computational science and engineering, pp 333–339. doi:10.1109/CSE.2010.50
Gao X, Wang X, Ovaska S, Zenger K (2012a) A hybrid optimization method of harmony search and opposition-based learning. Eng Optim 44(8):895–914. doi:10.1080/0305215X.2011.628387
Gao X, Wang X, Zenger K, Wang X (2012b) A bee foraging-based memetic harmony search method. In: IEEE international conference on systems, man, and cybernetics, pp 184–189. doi:10.1109/ICSMC.2012.6377697
Gao XZ, Wang X, Zenger K (2013) A modified harmony search method for wind generator design. Int J Bio-Inspired Comput 5(6):336–349. doi:10.1504/IJBIC.2013.058911
Geem ZW (2006) Optimal cost design of water distribution networks using harmony search. Eng Optim 38(3):259–277
Geem ZW (2009) Particle-swarm harmony search for water network design. Eng Optim 41(4):297–311. doi:10.1080/03052150802449227
Geem ZW, Sim KB (2010) Parameter-setting-free harmony search algorithm. Appl Math Comput 217(8):3881–3889. doi:10.1016/j.amc.2010.09.049
Geem ZW, Kim JH, Loganathan G (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68. doi:10.1177/003754970107600201
Gong W, Cai Z, Ling CX (2010) DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization. Soft Comput 15(4):645–665. doi:10.1007/s00500-010-0591-1
Guo L, Wang GG, Wang H, Wang D (2013) An effective hybrid firefly algorithm with harmony search for global numerical optimization. Sci World J 2013:9. doi:10.1155/2013/125625. (article ID: 125625)
Kennedy J, Eberhart R (1995) Particle swarm optimization. IEEE Int Conf Neural Netw 4:1942–1948. doi:10.1109/ICNN.1995.488968
Laskari EC, Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization for integer programming. IEEE Congr Evol Comput IEEE 2:1582–1587. doi:10.1109/CEC.2002.1004478
Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194(36):3902–3933
Li X, Yin M (2012) Multi-operator based biogeography based optimization with mutation for global numerical optimization. Comput Math Appl 64(9):2833–2844. doi:10.1016/j.camwa.2012.04.015
Liang JJ, Qu BY, Suganthan PN (2014) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Tech. Rep. 201311, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China
Lohokare M, Pattnaik S, Panigrahi B, Das S (2013) Accelerated biogeography-based optimization with neighborhood search for optimization. Appl Soft Comput 13(5):2318–2342. doi:10.1016/j.asoc.2013.01.020
Ma H, Simon D (2011) Blended biogeography-based optimization for constrained optimization. Eng Appl Artif Intell 24(3):517–525. doi:10.1016/j.engappai.2010.08.005
Ma H, Fei M, Ding Z, Jin J (2012) Biogeography-based optimization with ensemble of migration models for global numerical optimization. In: IEEE congress on evolutionary computation, pp 1–8. doi:10.1109/CEC.2012.6252930
Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579. doi:10.1016/j.amc.2006.11.033
Omran MG, Mahdavi M (2008) Global-best harmony search. Appl Math Comput 198(2):643–656. doi:10.1016/j.amc.2007.09.004
Omran MG, Geem ZW, Salman A (2011) Improving the performance of harmony search using opposition-based learning and quadratic interpolation. Int J Math Model Numer Optim 2(1):28–50
Pandi VR, Panigrahi BK, Das S, Cui Z (2010) Dynamic economic load dispatch with wind energy using modified harmony search. Int J Bio-Inspired Comput 2(3):282–289
Rolland E, Patterson RA, Ward K, Dodin B (2010) Decision support for disaster management. Oper Manag Res 3(1–2):68–79. doi:10.1007/s12063-010-0028-0
Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713. doi:10.1109/TEVC.2008.919004
Singh U, Kumar H, Kamal T (2010) Design of Yagi–Uda antenna using biogeography based optimization. IEEE Trans Anten Propag 58(10):3375–3379. doi:10.1109/TAP.2010.2055778
Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359. doi:10.1023/A:1008202821328
Tizhoosh H (2005) Opposition-based learning: a new scheme for machine intelligence. Comput Intell Modell Control Autom 1:695–701. doi:10.1109/CIMCA.2005.1631345
Wang CM, Huang YF (2010) Self-adaptive harmony search algorithm for optimization. Expert Syst Appl 37(4):2826–2837. doi:10.1016/j.eswa.2009.09.008
Wang G, Guo L, Duan H, Wang H, Liu L, Shao M (2013) Hybridizing harmony search with biogeography based optimization for global numerical optimization. J Comput Theor Nanosci 10(10):2312–2322
Wang L, Zhou P, Fang J, Niu Q (2011) A hybrid binary harmony search algorithm inspired by ant system. In: IEEE 5th international conference on cybernetics and intelligent systems, pp 153–158. doi:10.1109/ICCIS.2011.6070319
Wu B, Qian C, Ni W, Fan S (2012) Hybrid harmony search and artificial bee colony algorithm for global optimization problems. Comput Math Appl 64(8):2621–2634. doi:10.1016/j.camwa.2012.06.026
Yang GP, Liu SY, Zhang JK, Feng QX (2013) Control and synchronization of chaotic systems by an improved biogeography-based optimization algorithm. Appl Intell 39(1):132–143. doi:10.1007/s10489-012-0398-0
Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: González JR, Pelta DA, Cruz C, Terrazas G, Krasnogor N (eds) Nature inspired cooperative strategies for optimization, studies in computational intelligence, vol 284. Springer, Berlin, pp 65–74. doi:10.1007/978-3-642-12538-6_6
Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102. doi:10.1109/4235.771163
Yuan X, Zhao J, Yang Y, Wang Y (2014) Hybrid parallel chaos optimization algorithm with harmony search algorithm. Appl Soft Comput 17(4):12–22. doi:10.1016/j.asoc.2013.12.016
Yuan Y, Xu H, Yang J (2013) A hybrid harmony search algorithm for the flexible job shop scheduling problem. Appl Soft Comput 13(7):3259–3272. doi:10.1016/j.asoc.2013.02.013
Zheng YJ, Ling HF (2013) Emergency transportation planning in disaster relief supply chain management: a cooperative fuzzy optimization approach. Soft Comput 17(7):1301–1314. doi:10.1007/s00500-012-0968-4
Zheng YJ, Ling HF, Shi HH, Chen HS, Chen SY (2014a) Emergency railway wagon scheduling by hybrid biogeography-based optimization. Comput Oper Res 43(3):1–8. doi:10.1016/j.cor.2013.09.002
Zheng YJ, Ling HF, Wu XB, Xue JY (2014b) Localized biogeography-based optimization. Soft Comput 18(11):2323–2334. doi:10.1007/s00500-013-1209-1
Zheng YJ, Ling HF, Xue JY (2014) Ecogeography-based optimization: enhancing biogeography-based optimization with ecogeographic barriers and differentiations. Comput Oper Res 50:115–127. doi:10.1016/j.cor.2014.04.013
Zheng YJ, Chen SY, Ling HF (2015a) Evolutionary optimization for disaster relief operations: a survey. Appl Soft Comput (in press). doi:10.1016/j.asoc.2014.09.041
Zheng YJ, Ling HF, Chen SY, Xue JY (2015b) A hybrid neuro-fuzzy network based on differential biogeography-based optimization for online population classification in earthquakes. IEEE Trans Fuzzy Syst (in press). doi:10.1109/TFUZZ.2014.2337938
Zou D, Gao L, Wu J, Li S, Li Y (2010) A novel global harmony search algorithm for reliability problems. Comput Ind Eng 58(2):307–316. doi:10.1016/j.cie.2009.11.003
Acknowledgments
This work was supported by National Natural Science Foundation (Grant Nos. 61020106009, 61105073 and 61473263) and Zhejiang Provincial Natural Science Foundation (Grant No. LY14F030011) of China.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by V. Loia.
Rights and permissions
About this article
Cite this article
Zheng, YJ., Zhang, MX. & Zhang, B. Biogeographic harmony search for emergency air transportation. Soft Comput 20, 967–977 (2016). https://doi.org/10.1007/s00500-014-1556-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-014-1556-6