Skip to main content

Advertisement

Log in

Texture classification using feature selection and kernel-based techniques

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The interpretation of the results in a classification problem can be enhanced, specially in image texture analysis problems, by feature selection techniques, knowing which features contribute more to the classification performance. This paper presents an evaluation of a number of feature selection techniques for classification in a biomedical image texture dataset (2-DE gel images), with the aim of studying their performance and the stability in the selection of the features. We analyse three different techniques: subgroup-based multiple kernel learning (MKL), which can perform a feature selection by down-weighting or eliminating subsets of features which shares similar characteristic, and two different conventional feature selection techniques such as recursive feature elimination (RFE), with different classifiers (naive Bayes, support vector machines, bagged trees, random forest and linear discriminant analysis), and a genetic algorithm-based approach with an SVM as decision function. The different classifiers were compared using a ten times tenfold cross-validation model, and the best technique found is SVM-RFE, with an AUROC score of (\(95.88 \pm 0.39\,\%\)). However, this method is not significantly better than RFE-TREE, RFE-RF and grouped MKL, whilst MKL uses lower number of features, increasing the interpretability of the results. MKL selects always the same features, related to wavelet-based textures, while RFE methods focuses specially co-occurrence matrix-based features, but with high instability in the number of features selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbey CK, Nosratieh A, Sohl-Dickstein J, Yang K, Boone JM (2012) Non-Gaussian statistical properties of breast images. Med Phys 39(11):7121–7130

  • Al-Kadi OS (2010) Assessment of texture measures susceptibility to noise in conventional and contrast enhanced computed tomography lung tumour images. Computerized medical imaging and graphics. In: 8th IEEE international conference on bioinformatics and bioengineering, Athens, Greece, 8–10 Oct 2008, vol 34(6, SI), pp 494–503.

  • Alfons A (2012) cvTools: cross-validation tools for regression models. R package version 0.3.2. http://CRAN.R-project.org/package=cvTools

  • Alonso-Atienza F, Rojo-Álvarez JL, Rosado-Muñoz A, Vinagre JJ, García-Alberola A, Camps-Valls G (2012) Feature selection using support vector machines and bootstrap methods for ventricular fibrillation detection. Expert Syst Appl 39(2):1956–1967

    Article  Google Scholar 

  • Bac U, Bray M, Caban J, Yao J, Mollura DJ (2012) Computer-assisted detection of infectious lung diseases: a review. Comput Med Imaging Graph 36(1):72–84

    Article  Google Scholar 

  • Bahl G, Cruite I, Wolfson T, Gamst AC, Collins JM, Chavez AD, Barakat F, Hassanein T, Sirlin CB (2012) Noninvasive classification of hepatic fibrosis based on texture parameters from double contrast-enhanced magnetic resonance images. J Magn Reson Imaging 36(5):1154–1161

    Article  Google Scholar 

  • Bartlett MS (1937) Properties of sufficiency and statistical tests. Proc R Soc Lond Ser A Math Phys Sci 160(901):268–282

    Article  Google Scholar 

  • Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121–167

    Article  Google Scholar 

  • Caban J, Yao J, Bagci U, Mollura D (2011) Monitoring pulmonary fibrosis by fusing clinical, physiological, and computed tomography features. In: Engineering in Medicine and Biology Society, EMBC. 2011 Annual international conference of the IEEE, pp 6216–6219

  • Campbell C, Ying Y (2011) Learning with support vector machines. Synth Lect Artif Intell Mach Learn 5(1):1–95

    Article  Google Scholar 

  • Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines, ACM Trans Intell Syst Technol 2(27):1–27. Software http://www.csie.ntu.edu.tw/~cjlin/libsvm. Accessed 8 Nov 2014

  • Chang C-Y, Lai C-C, Lai C-T, Chen S-J (2013) Integrating PSONN and Boltzmann function for feature selection and classification of lymph nodes in ultrasound images. J Vis Commun Image Represent 24(1):23–30

    Article  Google Scholar 

  • Chang Y-W, Lin C-J (2008) Feature ranking using linear SVM. In: Guyon I, Aliferis CF, Cooper GF, Elisseeff A, Pellet J-P, Spirtes P, Statnikov AR (eds) WCCI causation and prediction challenge, JMLR Proceedings, vol 3. JMLR.org, pp 53–64

  • Chapelle O, Haffner P, Vapnik VN (1999) Support vector machines for histogram-based image classification. IEEE Trans Neural Netw 10(5):1055–1064

    Article  Google Scholar 

  • Chen Y-W, Lin C-J (2006) Combining SVMs with various feature selection strategies. In: Guyon I, Nikravesh M, Gunn S, Zadeh L (eds) Feature extraction Studies in fuzziness and soft computing, vol 207. Springer, Berlin, Heidelberg, pp 315–324

  • Chuah TK, Reeth EV, Sheah K, Poh CL (2013) Texture analysis of bone marrow in knee MRI for classification of subjects with bone marrow lesion data from the osteoarthritis initiative. Magn Reson Imaging 31(6):930–938

    Article  Google Scholar 

  • Conover W (1971) Practical nonparametric statistics. Wiley, New York

  • Daniel W (1990) Applied nonparametric statistics. Duxbury Thomson Learning, Pacific Grove

    Google Scholar 

  • Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  MATH  Google Scholar 

  • Eden E, Waisman D, Rudzsky M, Bitterman H, Brod V, Rivlin E (2005) An automated method for analysis of flow characteristics of circulating particles from in vivo video microscopy. Med Imaging IEEE Trans 24(8):1011–1024

    Article  Google Scholar 

  • Eliat P-A, Olivie D, Saikali S, Carsin B, Saint-Jalmes H, de Certaines JD (2012) Can dynamic contrast-enhanced magnetic resonance imaging combined with texture analysis differentiate malignant glioneuronal tumors from other glioblastoma? Neurol Res Int 2012:195176

    Article  Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874

    Article  MathSciNet  Google Scholar 

  • Fernandez-Lozano C, Canto C, Gestal M, Andrade-Garda JM, Rabunal JR, Dorado J, Pazos A (2013a) Hybrid model based on genetic algorithms and SVM applied to variable selection within fruit juice classification. Sci World J 2013:13

  • Fernandez-Lozano C, Gestal M, Pedreira N, Dorado J, Pazos A (2013b) High order texture-based analysis in biomedical images. Curr Med Imaging Rev 9(4):309–317

    Article  Google Scholar 

  • Fernandez-Lozano C, Seoane JA, Mesejo P, Nashed YSG, Cagnoni S, Dorado J (2013c) 2D-PAGE texture classification using support vector machines and genetic algorithms. In: Proceedings of the 4th international conference on bioinformatics models, methods and algorithms, pp 5–14

  • Fernandez-Lozano C, Fernandez-Blanco E, Dave K, Pedreira N, Gestal M, Dorado J, Munteanu CR (2014) Improving enzyme regulatory protein classification by means of SVM-RFE feature selection. Mol Biosyst 10:1063–1071

    Article  Google Scholar 

  • Ferri C, Hernandez-Orallo J, Modroiu R (2009) An experimental comparison of performance measures for classification. Pattern Recognit Lett 30(1):27–38

    Article  Google Scholar 

  • Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32(200):675–701

    Article  Google Scholar 

  • Fruehwald-Pallamar J, Czerny C, Holzer-Fruehwald L, Nemec SF, Mueller-Mang C, Weber M, Mayerhoefer ME (2013) Texture-based and diffusion-weighted discrimination of parotid gland lesions on MR images at 3.0 Tesla. NMR Biomed 26(11):1372–1379

    Article  Google Scholar 

  • Ganeshan B, Burnand K, Young R, Chatwin C, Miles K (2011) Dynamic contrast-enhanced texture analysis of the liver initial assessment in colorectal cancer. Invest Radiol 46(3):160–168

    Article  Google Scholar 

  • Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, Miles KA (2013) Nonsmall cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology 266(1):326–336

    Article  Google Scholar 

  • Ganeshan B, Skogen K, Pressney I, Coutroubis D, Miles K (2012) Tumour heterogeneity in oesophageal cancer assessed by CT texture analysis: preliminary evidence of an association with tumour metabolism, stage, and survival. Clin Radiol 67(2):157–164

    Article  Google Scholar 

  • Garcia S, Fernandez A, Luengo J, Herrera F (2009) A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft Comput 13(10):959–977

    Article  Google Scholar 

  • Garcia S, Fernandez A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Inf Sci 180(10):2044–2064

    Article  Google Scholar 

  • Gehler PV, Nowozin S (2009) On feature combination for multiclass object classification. In: ICCV, IEEE, pp 221–228

  • Goh V, Ganeshan B, Nathan P, Juttla JK, Vinayan A, Miles KA (2011) Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology 261(1):165–171

    Article  Google Scholar 

  • Guyon I, André E (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    MATH  Google Scholar 

  • Guyon I, Weston J, Barnhill S, Vapnik V (2002a) Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422

    Article  MATH  Google Scholar 

  • Guyon I, Weston J, Barnhill S, Vapnik V (2002b) Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422

    Article  MATH  Google Scholar 

  • Hanczar B, Hua J, Sima C, Weinstein J, Bittner M, Dougherty ER (2010) Small-sample precision of ROC-related estimates. Bioinformatics 26(6):822–830

    Article  Google Scholar 

  • Hand DJ (2009) Measuring classifier performance: a coherent alternative to the area under the ROC curve. Mach Learn 77(1):103–123

    Article  Google Scholar 

  • Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern SMC 3(6):610–621

    Article  Google Scholar 

  • Harrison L, Luukkaala T, Pertovaara H, Saarinen T, Heinonen T, Jarvenpaa R, Soimakallio S, Kellokumpu-Lehtinen P-L, Eskola H, Dastidar P (2009) Non-Hodgkin lymphoma response evaluation with MRI texture classification. J Exp Clin Cancer Res 28(1):87

  • Hodges J Jr, Lehmann EL (1962) Rank methods for combination of independent experiment in analysis of variance. Ann Math Stat 33(2):482–497

    Article  MathSciNet  MATH  Google Scholar 

  • Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press, Cambridge, MA, USA. ISBN: 0262082136

  • Holli K, Harrison L, Dastidar P, Waljas M, Liimatainen S, Luukkaala T, Ohman J, Soimakallio S, Eskola H (2010a) Texture analysis of MR images of patients with mild traumatic brain injury. BMC Med Imaging 10(1):8

    Article  Google Scholar 

  • Holli K, Lperi A-L, Harrison L, Luukkaala T, Toivonen T, Ryymin P, Dastidar P, Soimakallio S, Eskola H (2010b) Characterization of breast cancer types by texture analysis of magnetic resonance images. Acad Radiol 17(2):135–141

    Article  Google Scholar 

  • Hommel G (1988) A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika 75(2):383–386

    Article  MATH  Google Scholar 

  • Hong B-W, Sohn B-S (2010) Segmentation of regions of interest in mammograms in a topographic approach. Inf Technol Biomed IEEE Trans 14(1):129–139

    Article  Google Scholar 

  • Hossain S, Serikawa S (2013) Texture databases. A comprehensive survey. Pattern Recognit Lett 34(15):2007–2022 (smart approaches for human action recognition)

    Article  Google Scholar 

  • Hunt SMN, Thomas MR, Sebastian LT, Pedersen SK, Harcourt RL, Sloane AJ, Wilkins MR (2005) Optimal replication and the importance of experimental design for gel-based quantitative proteomics. J Proteome Res 4(3):809–819

    Article  Google Scholar 

  • Jafari-Khouzani K, Siadat M-R, Soltanian-Zadeh H, Elisevich K (2003) Texture analysis of hippocampus for epilepsy

  • Jafari-Khouzani K, Elisevich K, Patel S, Smith B, Soltanian-Zadeh H (2010) FLAIR signal and texture analysis for lateralizing mesial temporal lobe epilepsy. NeuroImage 49(2):1559–1571. doi:10.1016/j.neuroimage.2009.08.064.

  • Karatzoglou A, Smola A, Hornik K, Zeileis A (2004) Kernlab—an S4 [ackage for kernel methods in R. J Stat Softw 11(9):1–20

    Google Scholar 

  • Kavzoglu T (2009) Increasing the accuracy of neural network classification using refined training data. Environ Model Softw 24(7):850–858

    Article  Google Scholar 

  • Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1–2):273–324

    Article  MATH  Google Scholar 

  • Kudo M, Sklansky J (1998) A comparative evaluation of medium- and large-scale feature selectors for pattern classifiers. Kybernetika 34(4):429–434

    MATH  Google Scholar 

  • Kuhn M (2008) Building predictive models in R using the caret package. J Stat Softw 28(5):1–26

    Google Scholar 

  • Lanckriet GRG, Cristianini N, Bartlett P, Ghaoui LE, Jordan MI (2004a) Learning the kernel matrix with semidefinite programming. J Mach Learn Res 5:27–72

    MATH  Google Scholar 

  • Lanckriet GRG, De Bie T, Cristianini N, Jordan MI, Noble WS (2004b) A statistical framework for genomic data fusion. Bioinformatics 20(16):2626–2635

    Article  Google Scholar 

  • Levina E (2002) Statistical issues in texture analysis. University of California, Berkeley

    Google Scholar 

  • Li F, Zhao C, Xia Z, Wang Y, Zhou X, Li G-Z (2012) Computer-assisted lip diagnosis on traditional Chinese medicine using multi-class support vector machines. BMC Complement Altern Med 12:127. doi:10.1186/1472-6882-12-127

  • Lobo JM, Jimnez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17(2):145–151

    Article  Google Scholar 

  • Loizou CP, Pantziaris M, Seimenis I, Pattichis CS (2009) Brain MR image normalization in texture analysis of multiple sclerosis. In: 2009 9TH international conference on information technology and applications in biomedicine, University of Cyprus, Cyprus University Technology, University of Ioannina; Cyprus Institute, Frederick University, University of Wisconsin, IEEE Engineering Medical and Biological Society, International Federation of Medical and Biological Engineering, European Society of Engineering and Medicin. 9th International conference on information technology and applications in biomedicine, Larnaka, Cyprus, 4–7 Nov 2009, pp 131–135

  • Lopes R, Ayache A, Makni N, Puech P, Villers A, Mordon S, Betrouni N (2011) Prostate cancer characterization on MR images using fractal features. Med Phys 38(1):83–95

    Article  Google Scholar 

  • Mahapatra D, Schueffler P, Tielbeek J, Buhmann J, Vos F (2013) A supervised learning approach for Crohn’s disease detection using higher-order image statistics and a novel shape asymmetry measure. J Digit Imaging 26(5):920–931

    Article  Google Scholar 

  • Markel D, Caldwell C, Alasti H, Soliman H, Ung Y, Lee J, Sun A (2013) Automatic segmentation of lung carcinoma using 3D texture features in 18-FDG PET/CT. Int J Mol Imaging 2013. doi:10.1155/2013/980769

  • Materka A, Strzelecki M (1998) Texture analysis methods—a review. Technical University of Lodz, Institute of Electronics. COST B11 report

  • Mayerhoefer ME, Breitenseher MJ, Kramer J, Aigner N, Hofmann S, Materka A (2005) Texture analysis for tissue discrimination on T1-weighted MR images of the knee joint in a multicenter study: Transferability of texture features and comparison of feature selection methods and classifiers. J Magn Reson Imaging 22(5):674–680

    Article  Google Scholar 

  • Mignotte M, Meunier J, Tardif J-C (2001) Endocardial boundary estimation and tracking in echocardiographic images using deformable template and Markov random fields. Pattern Anal Appl 4(4):256–271

    Article  MathSciNet  MATH  Google Scholar 

  • Mirmehdi M, Xie X, Suri J (2009) Handbook of texture analysis. Imperial College Press, London

    Google Scholar 

  • Moulin LS, Alves Da Silva AP, El-Sharkawi MA, Marks Ii RJ (2004) Support vector machines for transient stability analysis of large-scale power systems. IEEE Trans Power Syst 19(2):818–825

  • Nailon WH (2010) Texture analysis methods for medical image characterisation. In: Youxin M (ed) Biomedical imaging. InTech. doi:10.5772/8912

  • Orphanidou-Vlachou E, Vlachos N, Davies NP, Arvanitis TN, Grundy RG, Peet AC (2014) Texture analysis of T1-and T2-weighted MR images and use of probabilistic neural network to discriminate posterior fossa tumours in children. NMR Biomed 27(6):632–639

  • Petrou M, Sevilla PG (2006) Image processing: dealing with texture. Wiley, New York

    Book  Google Scholar 

  • Pitiot A, Toga A, Thompson P (2002) Adaptive elastic segmentation of brain MRI via shape-model-guided evolutionary programming. Med Imaging IEEE Trans 21(8):910–923

    Article  Google Scholar 

  • Prater JS, Richard WD (1992) Segmenting ultrasound images of the prostate using neural networks. Ultrason Imaging 14(2):159– 185

    Article  Google Scholar 

  • Quade D (1979) Using weighted rankings in the analysis of complete blocks with additive block effects. J Am Stat Assoc 74(367):680–683

    Article  MathSciNet  MATH  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Rakotomamonjy A (2003) Variable selection using SVM based criteria. J Mach Learn Res 3:1357–1370

    MathSciNet  MATH  Google Scholar 

  • Rakotomamonjy A, Bach F, Canu S, Grandvalet Y (2008) Simple MKL. J Mach Learn Res 9:2491–2521

    MathSciNet  MATH  Google Scholar 

  • Rathi VPGP, Palani S (2012) Brain tumor MRI image classification with feature selection and extraction using linear discriminant analysis. CoRR, abs/1208.2128

  • Reyes-Aldasoro C, Bhalerao A (2003) Volumetric texture description and discriminant feature selection for MRI. Information processing in medical imaging: Proceedings of the conference, vol 18

  • Richard WD, Keen CG (1996) Automated texture-based segmentation of ultrasound images of the prostate. Comput Med Imaging Graph 20(3):131–140

    Article  Google Scholar 

  • Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform 12(1):77

    Article  Google Scholar 

  • Rojas-Domnguez A, Nandi AK (2009) Development of tolerant features for characterization of masses in mammograms. Comput Biol Med 39(8):678–688

    Article  Google Scholar 

  • Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23(19):2507–2517

    Article  Google Scholar 

  • Sahiner B, Chan H, Wei D, Petrick N, Helvie M, Adler D, Goodsitt M (1996) Image feature selection by a genetic algorithm: application to classification of mass and normal breast tissue. Med Phys 23(10):1671–1684

    Article  Google Scholar 

  • Seoane JA, Day INM, Gaunt TR, Campbell C (2014) A pathway-based data integration framework for prediction of disease progression. Bioinformatics 30(6):838–845. doi:10.1093/bioinformatics/btt610

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3–4):591–611

    Article  MathSciNet  MATH  Google Scholar 

  • Sheskin D (2011) Handbook of parametric and nonparametric statistical procedures. Taylor and Francis, New York

    MATH  Google Scholar 

  • Siedlecki W, Sklansky J (1989) A note on genetic algorithms for large-scale feature selection. Pattern Recognit Lett 10(5):335–347

    Article  MATH  Google Scholar 

  • Sonnenburg S, Rätsch G, Schäfer C, Schölkopf B (2006) Large scale multiple kernel learning. J Mach Learn Res 7:1531–1565

    MathSciNet  MATH  Google Scholar 

  • Spackman KA (1989) Signal detection theory: valuable tools for evaluating inductive learning. In: Alberto Maria Segre (ed) Proceedings of the sixth international workshop on Machine learning. Morgan Kaufmann Publishers Inc., pp 160–163

  • Szczypinski PM, Strzelecki M, Materka A (2007) Mazda - a software for texture analysis. In: International symposium on information technology convergence, 2007. ISITC 2007, pp 245–249. doi:10.1109/ISITC.2007.15

  • Szymanski JJ, Jamison JT, DeGracia DJ (2012) Texture analysis of poly-adenylated mRNA staining following global brain ischemia and reperfusion. Comput Methods Progr Biomed 105(1):81–94

  • Tuceryan M, Jain A (1999) Texture analysis, In Handbook of pattern recognition and computer vision, vol 2. World Scientific Publishing Company, Incorporated (chapter 2)

  • Vapnik VN (1982) Estimation of dependences based on empirical data (in Russian) Nauka, Moscow (1979) English translation: Springer Verlag, New York. ISBN: 0-387-90733-5

  • Wall M (1996) GAlib: A C++ library of genetic algorithm components. Mechanical Engineering Department, Massachusetts Institute of Technology

  • Wang J, Fan Z, Vandenborne K, Walter G, Shiloh-Malawsky Y, An H, Kornegay JN, Styner MA (2013) Statistical texture analysis based MRI quantification of Duchenne muscular dystrophy in a canine model. In: Proceedings of SPIE 8672, medical imaging 2013: biomedical applications in molecular, structural, and functional imaging, 86720F. doi:10.1117/12.2006892

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Wickham H (2011) The split-apply-combine strategy for data analysis. J Stat Softw 40(1):1–29

    MathSciNet  Google Scholar 

  • Woods BJ, Clymer BD, Kurc T, Heverhagen JT, Stevens R, Orsdemir A, Bulan O, Knopp MV (2007) Malignant-lesion segmentation using 4D co-occurrence texture analysis applied to dynamic contrast-enhanced magnetic resonance breast image data. J Magn Reson Imaging 25(3):495–501

    Article  Google Scholar 

  • Zacharaki EI, Wang S, Chawla S, Yoo DS, Wolf R, Melhem ER, Davatzikos C (2009) Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 62(6):1609–1618

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, Englewood Cliffs

    Google Scholar 

Download references

Acknowledgments

This work is supported by “Collaborative Project on Medical Informatics (CIMED)” PI13/00280 funded by the Carlos III Health Institute from the Spanish National plan for Scientific and Technical Research and Innovation 2013–2016 and the European Regional Development Funds (FEDER), UK Medical Research Council (G10000427, MC_UU_12013/8) and “Development of new image analysis techniques in 2D Gel for Biomedical research” (ref. 10SIN105004PR) funded by Xunta de Galicia. The authors thank the Galicia Supercomputing Centre (CESGA) for the provision of computational support. The authors also thank Dr. G.-Z. Yang for providing the dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Fernandez-Lozano.

Additional information

Communicated by I. R. Ruiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez-Lozano, C., Seoane, J.A., Gestal, M. et al. Texture classification using feature selection and kernel-based techniques. Soft Comput 19, 2469–2480 (2015). https://doi.org/10.1007/s00500-014-1573-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-014-1573-5

Keywords

Navigation