Skip to main content

Advertisement

Log in

Bolstering efficient SSGAs based on an ensemble of probabilistic variable-wise crossover strategies

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

A crossover operator in genetic algorithms (GAs) plays an essential role as the main search operator to breed offspring by exchanging information between individuals. Although different types of crossover operators have been developed for real-coded GAs (RCGAs), there has been very little research on combining different crossover operators to build more effective and efficient RCGAs. In this work, we propose new steady-state generation alternation-based RCGAs (SSGAs) ameliorated with (i) an ensemble of different probabilistic variable-wise crossover strategies, which is realized by the corresponding parallel populations, to utilize synergetic and complementary effect with their efficient operations, and (ii) efficient operation at each evolution step to obtain further performance enhancement. To investigate the performance of this ensemble with respect to search abilities and computation time, we compare the proposed algorithms against various SSGAs when running 27 benchmark functions. Empirical studies showed that the proposed algorithms exhibit better performance than the contestant SSGAs on these functions. Moreover, a comparison with the state-of-the-art evolutionary algorithms on eight difficult benchmark functions clearly demonstrated outperformance of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GAs:

Genetic algorithms

BCGAs:

Binary-coded GAs

RCGAs:

Real-coded GAs

MCXOs:

Mean-centric crossover operators

PCXOs:

Parent-centric crossover operators

HX:

Heuristic crossover

FX:

Flat crossover

AX:

Arithmetical crossover

BLX:

Blend crossover

SBX:

Simulated binary crossover

SaSBX:

Self-adaptive SBX

SA-SBX:

Self-adaptive parent to mean-centric SBX

UNDX:

Unimodal normal distribution crossover

UNDX-m:

A multi-parent extension of UNDX

SPX:

Simplex crossover

PCX:

Parent-centric crossover

PBX:

Parent-centric BLX

LX:

Laplace crossover

ECO:

Ensemble of crossover operators

pBLX:

Probabilistic variable-wise BLX

pPBX:

Probabilistic variable-wise PBX

pSaSBX:

Probabilistic variable-wise SBX

GM:

Gaussian mutation

UM:

Uniform (random) mutation

NUM:

Non-uniform mutation

PM:

Polynomial mutation

CTS:

Correlative tournament selection

NAM:

Negative assortative mating

UFS:

Uniform fertility selection

mUFS:

Modified uniform fertility tournament selection

MGG:

Minimal generation gap

G3:

Generalized generation gap

GGAs:

Generational GAs

SSGAs:

Steady-state GAs

RW:

Replace worst strategy

CD:

Contribution of diversity

CD/RW:

A hybrid method of CD and RW

RTS:

Restricted tournament selection

RTSw2:

RTS with window size of 2

RTSw2/RW:

A hybrid method of RTSw2 and RW

EAs:

Evolutionary algorithms

EP:

Evolution programming

ESs:

Evolution strategies

DE:

Differential evolution

PSO:

Particle swarm optimization

IPOP-CMA-ES:

A restart covariance matrix adaptation evolutionary strategy with increasing population size

SaDE:

Self-adaptive differential evolution

SPSO:

Standard particle swarm optimization

References

  • Auger A, Hansen N (2005) A restart CMA evolution strategy with increasing population size. In: Proceedings of the 2005 IEEE congress on evolutionary computation, pp 1769–1776

  • Bäck T, Fogel DB, Michalewicz Z (2000) Evolutionary computation 2: advanced algorithms and operators. Institute of Physics Publishing, Bristol

    Book  MATH  Google Scholar 

  • Ballester PJ, Carter JN (2004) An effective real-parameter genetic algorithm with parent centric normal crossover for multimodal optimization. In: Proceedings of the genetic and evolutionary computation conference, LNCS, vol 3102. Springer, New York, pp 901–913

  • Beyer H-G, Deb K (2001) On self-adaptive features in real-parameter evolutionary algorithms. IEEE Trans Evolut Comput 5:250–270

    Article  Google Scholar 

  • Bonham CR, Parmee IC (1999) An investigation of exploration and exploitation within cluster oriented genetic algorithms (COGAs). Proceedings of the genetic and evolutionary computation conference. Morgan Kaufmann, San Francisco, pp 1491–1497

    Google Scholar 

  • Clerc M (2011) Standard PSO 2011. In: Particle swarm central (Online). http://www.particleswarm.info

  • Davis L (1989) Adapting operator probabilities in genetic algorithms. In: Schaffer JD (ed) Proceedings of 3rd international conference on genetic algorithms, Morgan Kaufmann, San Mateo, pp 61–69

  • De Jong KA, Sarma J (1993) Generation gaps revisited. In: Whitley LD (ed) Foundations of genetic algorithms 2. Morgan Kaufmann, San Mateo, pp 19–28

    Google Scholar 

  • Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York

    MATH  Google Scholar 

  • Deb K, Agrawal RB (1995) Simulated binary crossover for continuous search space. Complex Syst 9:115–148

    MathSciNet  MATH  Google Scholar 

  • Deb K, Agrawal S (1999) A niched-penalty approach for constraint handling in genetic algorithms. In: Proceedings of the international conference on artificial neural networks and genetic algorithms (ICANNGA-99), pp 235–243

  • Deb K, Anand A, Joshi D (2002) A computationally efficient evolutionary algorithm for real-parameter evolution. Evolut Comput 10:371–395

    Article  Google Scholar 

  • Deb K, Beyer H-G (1999) Self-adaptation in real-parameter genetic algorithms with simulated binary crossover. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp 172–179

  • Deb K, Deb D (2012) Analyzing mutation schemes for real-parameter genetic algorithms. KanGAL, report no 2012016

  • Deb K, Jain H (2011) Self-adaptive parent to mean-centric recombination for real-parameter optimization. Indian Institute of Technology Kanpur, KanGAL, report no 2011001

  • Deb K, Karthik S, Okabe T (2007) Self-adaptive simulated binary crossover for real-parameter optimization. In: Proceedings of 9th annual conference on genetic and evolutionary computation, London, England, pp 1187–1194

  • Deep K, Thakur M (2007) A new crossover operator for real coded genetic algorithms. Appl Math Comput 188:895–911

    MathSciNet  MATH  Google Scholar 

  • Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut Comput 1:3–18

    Article  Google Scholar 

  • Domínguez J, Alba E (2013) Dealing with hardware heterogeneity: a new parallel search model. Nat Comput 12:179–193

    Article  MathSciNet  Google Scholar 

  • Eshelman LJ, Schaffer JD (1993) Real-coded genetic algorithms and interval-schemata. In: Whitley LD (ed) Foundations of genetic algorithms 2. Morgan Kaufmann Publishers, San Mateo, pp 187–202

    Google Scholar 

  • Fernandes C, Rosa A (2001) A study on non-random mating and varying population size in genetic algorithms using a royal road function. Proceedings of 2001 congress on evolutionary computation. IEEE Press, Piscataway, pp 60–66

    Google Scholar 

  • Fogel DB (1995) Evolutionary computation: toward a new philosophy of machine intelligence. IEEE Press, New York

    MATH  Google Scholar 

  • Fogel DB, Beyer H-G (1995) A note on empirical evaluation of intermediate recombination. Evolut Comput 3:491–495

    Article  Google Scholar 

  • García-Nieto J, Alba E (2012) Parallel multi-swarm optimizer for gene selection in DNA microarrays. Appl Intell 37:255–266

    Article  Google Scholar 

  • Garcia-Martinez C, Lozano M, Herrera F, Molina D, Sanchez AM (2008) Global and local real-coded genetic algorithms based on parent-centric crossover operators. Eur J Op Res 185:1088–1113

    Article  MATH  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley Longman Publishing Co., Inc, Massachusetts

  • Goldberg DE, Deb K (1991) A comparative analysis of selection schemes used in genetic algorithms. In: Rawlins GJE (ed) Foundations of genetic algorithms. Morgan Kaufmann, San Mateo, pp 69–93

    Google Scholar 

  • Gwak J, Jeon M (2013) A robust real-coded genetic algorithm using an ensemble of crossover operators. In: Proceedings of the genetic and evolutionary computation conference, pp 1737–1738

  • Hansen N, Ostermeier A (1996) Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: Proceedings of 1996 IEEE confernce evolutionary computing (ICEC ’96), Berlin, Germany, pp 312–317

  • Hansen N, Ostermeier A (2001) Completely derandomized selfadaptation in evolution strategies. Evolut Comput 9:159–195

    Article  Google Scholar 

  • Harik G (1995) Finding multimodal solutions using restricted tournament selection. In: Eshelman LJ (ed) Proceedings of the 6th international conference on genetic algorithms. Morgan Kaufmann, San Mateo, pp 24–31

    Google Scholar 

  • Herrera F, Lozano M (2000) Gradual distributed real-coded genetic algorithms. IEEE Trans Evolut Comput 4:43–63

    Article  Google Scholar 

  • Herrera F, Lozano M, Sánchez AM (2003) A taxonomy for the crossover operator for real-coded genetic algorithms: an experimental study. Int J Intell Syst 18:309–338

    Article  MATH  Google Scholar 

  • Herrera F, Lozano M, Sánchez AM (2005) Hybrid crossover operators for real-coded genetic algorithms: an experimental study. Soft Comput 9:280–298

    Article  MATH  Google Scholar 

  • Herrera F, Lozano M, Verdegay JL (1997) Fuzzy connectives based crossover operators to model genetic algorithms population diversity. Fuzzy Set Syst 92:21–30

    Article  Google Scholar 

  • Herrera F, Lozano M, Verdegay JL (1998) Tackling real-coded genetic algorithms: operators and tools for behavioral analysis. Artif Intell Rev 12:265–319

    Article  MATH  Google Scholar 

  • Herrera F, Lozano M, Molina D (2010) Test suite for the special issue of soft computing on scalability of evolutionary algorithms and other metaheuristics for large scale continuous optimization problems. http://sci2s.ugr.es/eamhco/CFP.php

  • Khanh DVK, Vasant P, Elamvazuthi I, Dieu VN (2014) Optimization of thermo-electric coolers using hybrid genetic algorithm and simulated annealing. Arch Control Sci 24:155–176

    MATH  Google Scholar 

  • Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE conference on neural networks, IV, Piscataway, NJ, pp 1942–1948

  • Kita H, Ono I, Kobayashi S (1999) The multi-parent unimodal normal distribution crossover for real-coded genetic algorithms. In: Proceedings of the IEEE congress on evolutionary computation, vol 2, pp 1588–1595

  • Liang JJ, Qu B-Y, Suganthan PN, Hernández-Díaz AG (2013) Problem definitions and evaluation criteria for the CEC 2013 special session and competition on real-parameter optimization, technical report 201212. Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, Computational Intelligence Laboratory

  • Liang Y, Zhang M, Browne WN (2014) Image segmentation: a survey of methods based on evolutionary computation. Simul Evolut Learn LNCS 8886:847–859

  • Lobo GF, Lima CF, Michalewicz Z (eds) (2007) Parameter setting in evolutionary algorithms. Springer, New York

    MATH  Google Scholar 

  • Lozano M, Herrera F, Cano JR (2008) Replacement strategies to preserve useful diversity in steady-state genetic algorithms. Inf Sci 178:4421–4433

    Article  Google Scholar 

  • Lozano M, Herrera F, Krasnogor N, Molina D (2004) Real-coded memetic algorithms with crossover hill-climbing. Evolut Comput 12:273–302

    Article  Google Scholar 

  • Mahfoud SW (1992) Crowding and preselection revised. In: Manner R, Manderick B (eds) Parallel problem solving from nature 2. Elsevier, Amsterdam, pp 27–36

    Google Scholar 

  • Mallipeddi R, Mallipeddi S, Suganthan PN (2010) Ensemble strategies with adaptive evolutionary programming. Inf Sci 180:1571–1581

    Article  MATH  Google Scholar 

  • Mallipeddi R, Suganthan PN (2010) Ensemble of constraint handling techniques. IEEE Trans Evolut Comput 14:561–579

    Article  Google Scholar 

  • Matsui K (1999) New selection method to improve the population diversity in genetic algorithms. In: Proceedings of IEEE international conference on systems, man, and cybernetics, pp 625–630

  • Mengshoel OJ, Goldberg DE (1999) Probabilistic crowding: deterministic crowding with probabilistic replacement. In: Banzhaf W et al (eds) Proceedings of the genetic and evolutionary computation conference GECCO-99. Morgan Kaufmann Publishers, San Francisco, pp 409–416

    Google Scholar 

  • Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs, 3rd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Article  MATH  Google Scholar 

  • Ono I, Kobayashi S (1997) A real-coded genetic algorithm for function optimization using unimodal normal distribution crossover. In: Proceedings of the 7th international conference on genetic algorithms, pp 246–253

  • Price K, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization, 1st edn. Springer, New York

  • Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evolut Comput 13:398–417

    Article  Google Scholar 

  • Radcliffe NJ (1991) Equivalence class analysis of genetic algorithms. Complex Syst 2:183–205

    MathSciNet  MATH  Google Scholar 

  • Satoh H, Yamamura M, Kobayashi S (1996) Minimal generation gap model for GAs considering both exploration and exploitation. In: Proceedings of 4th international conference on soft computing, pp 494–497

  • Schwefel H-P (1987) Collective phenomena in evolutionary systems. In: Checkland P, Kiss I (eds) problems of constancy and change: the complementarity of systems approaches to complexity, pp 1025–1033

  • Serpell M, Smith JE (2010) Self-adaptation of mutation operator and probability for permutation representations in genetic algorithms. Evolut Comput 18:491–514

    Article  Google Scholar 

  • Shimodaira H (1999) A diversity control oriented genetic algorithm (DCGA): development and experimental results. Proceedings of the genetic and evolutionary computation conference. Morgan Kaufmann, San Francisco, pp 603–611

    Google Scholar 

  • Smith J, Fogarty TC (1996) Self-adaptation of mutation rates in a steady state genetic algorithm. Proceedings of 1996 IEEE international conference on evolutionary computation. IEEE Press, Piscataway, pp 318–323

    Chapter  Google Scholar 

  • Spears WM (2000) Evolutionary algorithms: the role of mutation and recombination. Springer, Berlin

    Book  MATH  Google Scholar 

  • Talbi EG, Hasle G (2013) Metaheuristics on GPUs. J Parallel Distrib Comput 73:1–3

    Article  Google Scholar 

  • Tang K, Peng F, Chen G, Yao X (2014) Population-based algorithm portfolios with automated constituent algorithms selection. Inf Sci 279:94–104

    Article  Google Scholar 

  • Takahashi M, Kita H (2001) A crossover operator using independent component analysis for real-coded genetic algorithm. In: Proceedings of IEEE congress on evolutionary computation, pp 643–649

  • Tasgetiren MF, Suganthan PN, Pan QK (2010) An ensemble of discrete differential evolution algorithms for solving the generalized traveling salesman problem. Appl Math Comput 215:3356–3368

    MathSciNet  MATH  Google Scholar 

  • Thierens D, Goldberg DE (1994) Elitist recombination: an integrated selection recombination GA. In: Proceedings of the 1st IEEE conference on evolutionary computation, pp 152–159

  • Toffolo A, Benini E (2003) Genetic diversity as an objective in multi-objective evolutionary algorithms. Evolut Comput 11:151–167

    Article  Google Scholar 

  • Toutouh J, Nesmachnow S, Alba E (2013) Fast energy-aware OLSR routing in VANETs by means of a parallel evolutionary algorithm. Cluster Comput 16:435–450

    Article  Google Scholar 

  • Tsutsui S, Yamamura M, Higuchi T (1999) Multi-parent recombination with simplex crossover in real-coded genetic algorithms. In: Proceedings of the genetic and evolutionary computation conference, pp 657–664

  • Ursem RK (2002) Diversity-guided evolutionary algorithms. Proceedings of parallel problem solving from nature VII (PPSN-2002). Springer, New York, pp 462–471

    Chapter  Google Scholar 

  • Vasant P, Barsoum N (2009) Hybrid genetic algorithms and line search method for industrial production planning with non-linear fitness function. Eng Appl Artif Intell 22:767–777

    Article  Google Scholar 

  • Vasant P (2010) Innovative hybrid genetic algorithms and line search method for industrial production management. In: Chis M (ed) Evolutionary computation and optimization algorithms in software engineering: application and techniques, IGI Global, Hershey, PA, USA, pp 142–160

  • Vasant P (2013) Hybrid mesh adaptive direct search genetic algorithms and line search approaches for fuzzy optimization problems in production planning. Intell Syst Ref Libr 38:779–799

    Article  Google Scholar 

  • Vavak F, Fogarty TC (1996) A comparative study of steady state and generational genetic algorithms. In: Proceedings of evolutionary computing: AISB Workshop, LNCS 1143, Springer, Berlin, Heidelberg

  • Voigt HM, Mühlenbein H, Cvetkovic D (1995) Fuzzy recombination for the breeder genetic algorithm. In: Eshelman L (ed) Proceedings of the 6th international conference on genetic algorithms, Morgan Kaufmann, San Francisco, pp 104–111

  • Wakunda J, Zell A (2000) Median-selection for parallel steady-state evolution strategies. In: Proceedings of the parallel problem solving from nature, PPSN VI, LNCS 1917, Springer, Berlin, Heidelberg, pp 405–414

  • Wiese K, Goodwin SD (1999) Convergence characteristics of keep-best reproduction. In: Proceedings of selected areas in cryptography, pp 312–318

  • Wolpert DH, Macready WG (1997) No free lunch theorem for optimization. IEEE Trans Evolut Comput 1:67–82

    Article  Google Scholar 

  • Wright AH (1991) Genetic algorithms for real parameter optimization. In: Rawlins GJE (ed) Foundations of genetic algorithms I. Morgan Kaufmann, San Mateo

    Google Scholar 

  • Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evolut Comput 3:82–102

    Article  Google Scholar 

  • Yu EL, Suganthan PN (2010) Ensemble of niching algorithms. Inf Sci 180:2815–2833

    Article  MathSciNet  Google Scholar 

  • Zhao SZ, Suganthan PN (2013) Empirical investigations into the exponential crossover of differential evolutions. Swarm Evolut Comput 9:27–36

    Article  Google Scholar 

  • Zhao SZ, Suganthan PN, Zhang Q (2012) Decomposition based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Trans Evolut Comput 16:442–446

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully thank Dr. P. N. Suganthan for providing the source codes of ensemble-based mechanisms which were very helpful in analyzing previous models. The CERCIA at the University of Birmingham, UK, partly provided research facilities for carrying out the experimental results. This work was financially supported in part by the ICT R&D Program of MSIP/IITP (Grant No. 14-824-09-002, Development of global multi-target tracking and event prediction techniques based on real-time large-scale video analysis) and the National Research Foundation of Korea under Grant No. NRF-2013R1A1A2A10012587.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moongu Jeon.

Additional information

Communicated by U. Fiore.

Appendix: Test function suite

Appendix: Test function suite

$$\begin{aligned}&f_1 (x)=\sum \limits _{i=1}^D {z_i^2 } +450,\,z=x-o.\\&f_2 (x)=\sum \limits _{i=1}^D {\left( {\sum \limits _{j=1}^i {z_j } }\right) }^2,\,z=x-o. \\&f_3 (x)= \sum \limits _{i=1}^D {z_i^2 } \left( +2z_{i+1}^2 -0.3\cos (3\pi z_i)\right. \\&\qquad \qquad \left. -0.4\cos (4\pi z_{i+1})+0.7\right) ,\,z=x-o. \\&f_4 (x)\!=\!\sum \limits _{i=1}^D \left( {z_i^2} \!+\!z_{i\!+\!1}^2\right) ^{0.25}\left( {\sin ^2\left( {50\left( z_i^2 \!+\!z_{i+1}^2\right) ^{0.1}}\right) \!+\!1}\right) ,\\&\qquad z=x-o. \\&f_5 (x)=\sum \limits _{i=1}^D {\left| {z_i}\right| } +\mathop \prod \limits _{i=1}^D \left| {z_i}\right| ,\,z=x-o. \\&f_6 (x)=\mathop {\max }\limits _i\left\{ {\left| {z_i}\right| ,\,1\le i\le D}\right\} +450,\,z=x-o. \\&f_7 (x)\!=\!\sum \limits _{i=1}^D \left( {100}(z_i^2 \!+\! z_{i+1})^{2} \!+\! (z_i-1)^2\right) +390,\,z\!=\!x\!-\!o \\&f_8 (x)=\sum \limits _{i=1}^{D-1} \left( {100}(z_i^2 + z_{i+1}\right) ^{2}+ \left( z_i-1)^2\right) -900,\\&\qquad z={\mathbf {M}}_1 \left( {\frac{2.048(x-o)}{100}}\right) +1.\\&f_9 (x)=-20\exp \left( {-0.2\sqrt{\frac{1}{D}\sum \limits _{i=1}^D {z_i^2 } }}\right) \\&\quad -\exp \left( {\frac{1}{D}\sum \limits _{i=1}^D {\cos (2\pi z_i)}}\right) +20+e-140,\,z=x-o.\\&f_{10} (x)=-20\exp \left( {-0.2\sqrt{\frac{1}{D}\sum \limits _{i=1}^D {z_i^2 } }}\right) \\&\quad -\exp \left( {\frac{1}{D}\sum \limits _{i=1}^D {\cos (2\pi z_i)}}\right) +20+e-700,\\&z=\Lambda ^{10}{\mathbf {M}}_2 T_{asy}^{0.5} \left( {\mathbf {M}}_1 (x-o)\right) . \end{aligned}$$
$$\begin{aligned}&f_{11} (x)\!=\!\sum \limits _{i=1}^D {\frac{z_i^2 }{4000}} \!+\!\mathop \prod \limits _{i=1}^D \cos \left( {\frac{z_i }{\sqrt{i} }}\right) \!+\!1\!-\!180,\,z\!=\!x-o.\\&f_{12} (x)=\sum \limits _{i=1}^D {\frac{z_i^2 }{4000}} +\mathop \prod \limits _{i=1}^D \cos \left( {\frac{z_i }{\sqrt{i} }}\right) +1-500,\\&z=\Lambda ^{100}{\mathbf {M}}_1 \frac{600 (x-o)}{100}.\\&f_{13} (x)\!=\!\sum \limits _{i=1}^D {\left( {z_i^2 \!-\! 10\cos (2\pi z_i)\!+\!10}\right) -330},\,z\!=\!x-o.\\&f_{14} (x)=\sum \limits _{i=1}^D {\left( {z_i^2 -10\cos (2\pi z_i)+10}\right) -300,}\\&z={\mathbf {M}}_1 \Lambda ^{10}{\mathbf {M}}_2 T_{asy}^{0.2} \left( {T_{osz} \left( {{\mathbf {M}}_1 \left( {\frac{5.12(x-o)}{100}}\right) }\right) }\right) .\\&f_{15} (x)=\sum \limits _{i=1}^D {\left( {z_i^2 -10\cos (2\pi z_i)+10}\right) -200,}\,\\ {\mathop {x}\limits ^{\frown }}&={\mathbf {M}}_1 \frac{5.12(x-o)}{100},\\&y_i \!=\! {\left\{ \begin{array}{ll} {{\mathop {x}\limits ^{\frown }}}_i &{} \text{ if } \left| {{\mathop {x}\limits ^{\frown }}}_i\right| \ge 0.5\\ { round}\left( 2{{\mathop {x}\limits ^{\frown }}}_i\right) /2 &{} \text{ if } \left| {{\mathop {x}\limits ^{\frown }}}_i\right| >0.5\\ \end{array}\right. } \quad \!\text{ for } i\!=\!1,2,\ldots , D\\&z={\mathbf {M}}_1 \Lambda ^{10}{\mathbf {M}}_2 T_{asy}^{0.2} ({T_{osz} (y)}). \end{aligned}$$
$$\begin{aligned}&f_{16} (x)=\sum \limits _{i=1}^D \left( {\sum \limits _{k=0}^{kmax} {\left[ {a^k\cos \left( 2\pi b^k(z_i +0.5)\right) }\right] } }\right) \\&\quad -D\sum \limits _{k=0}^{kmax} {\left[ {a^k\cos (2\pi b^k0.5)}\right] } -600,\\&\quad a=0.5, b = 3,\,kmax=20,\\&\quad z=\Lambda ^{10}{\mathbf {M}}_2 T_{asy}^{0.5} \left( {{\mathbf {M}}_1 \frac{0.5(x-o)}{100}}\right) .\\&f_{17} (x)=g(z_1, z_2)+g(z_2, z_3)+\cdots +g(z_{D-1}, z_D)\\&\quad +g(z_D, z_1)+600,\\&g(m,n)=0.5+\frac{\sin ^2\left( \sqrt{m^2+n^2}\right) -0.5}{\left( {1+0.001(m^2+n^2)}\right) ^{2}},\\&z={\mathbf {M}}_2 T_{asy}^{0.5} \left( {{\mathbf {M}}_1 (x-o)}\right) .\\&f_{18} (x)=\frac{\pi }{D}\left\{ 10\sin ^2(\pi y_1)+\sum \limits _{i=1}^{D-1} (y_i -1)^2\right. \\&\quad \left. \times \left[ {1+10\sin ^2(\pi y_{i+1})}\right] + (y_D -1)^{2}\right\} \\&\quad +\sum \limits _{i=1}^D {u(x_i, 10,100,4)},\\&\quad \hbox {where }y_i =1+\frac{1}{4}(x_i +1)\hbox { and }\\&\quad u(x_i, a,k,m)= {\left\{ \begin{array}{ll} k(x_i -a)^m,&{}{x_i >a}\\ 0,&{}{-a\le x_i \le a}\\ k(-x_i -a)^m,&{}{x_i <-a}\\ \end{array}\right. }. \end{aligned}$$
$$\begin{aligned}&f_{19} (x)=0.1\left\{ 10\sin ^2(3\pi x_1)+\sum \limits _{i=1}^{D-1} (x_i-1)^2\right. \\&\quad \left. \left[ {1+\sin ^2(3\pi x_{i+1})}\right] + (x_D -1)[1+\sin ^2(2\pi x_D)]\right\} \\&\quad +\sum \limits _{i=1}^D {u(x_i, 5,100,4)}.\\&f_{20} (x)=\sum \limits _{i=1}^{11} {\left[ {a_i -\frac{x_1 (b_i^2 +b_i x_2)}{b_i^2 +b_i x_3 +x_4 }}\right] }^2.\\&f_{21} (x)=4x_1^2 -2.1x_1^4 +\frac{1}{3}x_1^6 +x_1 x_2 -4x_2^2 +4x_2^4 .\\&f_{22} (x)=\left( {x_2 -\frac{5.1}{4\pi ^2}x_1^2 +\frac{5}{\pi }x_1 -6}\right) ^{2}\\&\quad +10\left( {1-\frac{1}{8\pi }}\right) \cos (x_1)+10.\\&f_{23-24} (x)=-\sum \limits _{i=1}^4 {c_i } \exp \left[ {-\sum \limits _{j=1}^D{a_{ij} (x_j -p_{ij})^2} }\right] ,\\&\quad \hbox {with }D=3,6\hbox { for }f_{22} (x)\hbox { and }f_{23} (x),\hbox { respectively.}\\&f_{25-27} (x)=-\sum \limits _{i=1}^D {\left[ {(x-a_i)(x-a_i)^T+c_i}\right] },\\&\quad \hbox {with }D=5,7,\hbox { and }10\hbox { for }f_{24} (x),f_{25} (x),\\&\quad \hbox {and }f_{26} (x),\hbox { respectively.} \end{aligned}$$

\(f_{28} (x){-}f_{35} (x)\) is based on the following composition function model:

$$\begin{aligned} f_c (x)=\sum \limits _{i=1}^4 { \{ \omega _i \cdot \left[ \lambda _i g_i (x)+bias_i\right] \}+f^{*}} \end{aligned}$$

\(g_i (x):\) the \(i\)th basic function to build the composition function \(f_c (x)\);

\(n\): the number of basic functions;

\(o_i:\) new shifted optimum position for each \(g_i (x)\), which is used to define the positions of the global and local optima;

\(bias_i:\) to define which one is the global optimum;

\(\lambda _i:\) to control the height of \(g_i (x)\);

\(\omega _i:\) the normalized weight of the weight \(w_i\) for \(g_i (x)\), which is defined as

$$\begin{aligned}&\omega _i \!=\!\frac{w_i }{\sum \nolimits _{i=1}^n {w_i}}\\&\hbox { where }w_i \!=\!\frac{1}{\sqrt{\sum \nolimits _{j=1}^D {(x_j \!-\! o_{ij})^2}}}\exp \left( -\frac{\sum \nolimits _{j=1}^D {(x_j -o_{ij})^2} }{2D\sigma _i^2 }\right) , \end{aligned}$$

in which \(\sigma _i\) is to control the coverage range of \(g_i (x)\), i.e., a small value of \(g_i (x)\) gives a narrow range and vice versa. If \(x=o_i\), then \(\omega _j = {\left\{ \begin{array}{ll} 1 &{} j=i \\ 0 &{} j \ne i\\ \end{array}\right. }\) for \(j\)=1,2,...,\(n\), and thus \(f_c (x)=bias_i +f^*\); this indicates that global optimum has the smallest bias.

 

\(n\)

\(\sigma \)

\(\lambda \)

bias

\(g_i\)

\(f_{28} (x)\)

5

\({[10,20,30,40,50]}\)

[1,1e-6,1e-26,1e-6,0.1]

\({[0,100,200,300,400]}\)

\(g_1\): rotated Rosenbrock’s function

\(g_2\): rotated Different Powers function

\(g_3\): rotated Bent Cigar function

\(g_4\): rotated Discus function

\(g_5\): Sphere function

\(f_{29} (x)\)

3

\({[20,20,20]}\)

\({[1,1,1]}\)

\({[0,100,200]}\)

\(g_1 -g_3\): Schwefel’s function

\(f_{30} (x)\)

3

\({[20,20,20]}\)

\({[1,1,1]}\)

\({[0,100,200]}\)

\(g_1 -g_3\): Rotated Schwefel’s function

\(f_{31} (x)\)

3

\({[20,20,20]}\)

[0.25,1,2.5]

\({[0,100,200]}\)

\(g_1\): rotated Schwefel’s function

\(g_2\):rotated Rastrigin’s function

\(g_3\): rotated Weierstrass’s function

\(f_{32} (x)\)

3

\({[10,30,50]}\)

[0.25,1,2.5]

\({[0,100,200]}\)

\(g_1\):rotated Schwefel’s function

\(g_2\): rotated Rastrigin’s function

\(g_3\): rotated Weierstrass’s function

\(f_{33} (x)\)

5

\({[10,10,10,10,10]}\)

[0.25,1,1e-7,2.5,10]

\({[0,100,200,300,400]}\)

\(g_1\): rotated Schwefel’s function

\(g_2\): rotated Rastrigin’s function

\(g_3\): rotated high conditional elliptic function

\(g_4\): rotated Weierstrass’s function

\(g_5\): rotated Griewank’s function

\(f_{34} (x)\)

5

\({[10,10,10,20,20]}\)

[100,10,2.5,25,0.1]

\({[0,100,200,300,400]}\)

\(g_1\): rotated Griewank’s function

\(g_2\): rotated Rastrigin’s function

\(g_3\): rotated Schwefel’s function

\(g_4\): rotated Weierstrass’s function

\(g_5\): Sphere function

\(f_{35} (x)\)

5

\({[10,20,30,40,50]}\)

[2.5,2,5e-3,2.5,5e-4,0.1]

\({[0,100,200,300,400]}\)

\(g_1\): rotated expanded Griewank’s function + Rosenbrock’s function

\(g_2\): rotated Schaffers F7 function

\(g_3\): rotated Schwefel’s function

\(g_4\): rotated Expanded Schaffer’s F6 function

\(g_5\): Sphere function

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gwak, J., Jeon, M. & Pedrycz, W. Bolstering efficient SSGAs based on an ensemble of probabilistic variable-wise crossover strategies. Soft Comput 20, 2149–2176 (2016). https://doi.org/10.1007/s00500-015-1630-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1630-8

Keywords

Navigation