Abstract
Multilevel thresholding is the method applied to segment the given image into unique sub-regions when the gray value distribution of the pixels is not distinct. The segmentation results are affected by factors such as number of threshold and threshold values. Hence, this paper proposes different methods for determining optimal thresholds using optimization techniques namely GA, PSO and hybrid model. Parallel algorithms are also proposed and implemented for these methods to reduce the execution time. From the experimental results, it is inferred that proposed methods take less time for determining the optimal thresholds when compared with existing methods such as Otsu and Kapur methods.
Access this article
Rent this article via DeepDyve
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1677-6/MediaObjects/500_2015_1677_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1677-6/MediaObjects/500_2015_1677_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1677-6/MediaObjects/500_2015_1677_Fig3_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1677-6/MediaObjects/500_2015_1677_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1677-6/MediaObjects/500_2015_1677_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1677-6/MediaObjects/500_2015_1677_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1677-6/MediaObjects/500_2015_1677_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1677-6/MediaObjects/500_2015_1677_Fig8_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1677-6/MediaObjects/500_2015_1677_Fig9_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1677-6/MediaObjects/500_2015_1677_Fig10_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1677-6/MediaObjects/500_2015_1677_Fig11_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1677-6/MediaObjects/500_2015_1677_Fig12_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1677-6/MediaObjects/500_2015_1677_Fig13_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1677-6/MediaObjects/500_2015_1677_Fig14_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1677-6/MediaObjects/500_2015_1677_Fig15_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1677-6/MediaObjects/500_2015_1677_Fig16_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1677-6/MediaObjects/500_2015_1677_Fig17_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1677-6/MediaObjects/500_2015_1677_Fig18_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1677-6/MediaObjects/500_2015_1677_Fig19_HTML.gif)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Akay B (2013) A study on particle swarm optimization and artificial bee colony algorithms for multi level thresholding. Appl Soft Comput 13(6):3066–3091
Akl SG (1990) The design and analysis of parallel algorithms. Prentice Hall of India, India
Ali M, Ahn CW, Pant M (2014) Multi level image thresholding by synergetic differential evolution. Appl Soft Comput 17:1–11 (Elsevier)
Djerou L, Khelil N, Dehimi NH, Batouche M (2012) Automatic multi-level thresholding segmentation based on multi-objective optimization. J Appl Comput Sci Math (Suceava) 13(6):25–31
Goldberg DE (1989) Genetic algorithms: search, optimization and machine learning. Addison, Wesley
Gonzalez RC, Woods RE (2008) Digital image processing. Prentice Hall, New Jersey
Hammouche K, Diaf M, Siarry P (2008) A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation. Comput Vision Image Underst 109:163–175 (Elsevier)
Indira SU, Ramesh A C (2011) Image segmentation using artificial neural network and genetic algorithm : a comparative analysis. In: International conference on Process automation, control and computing, Cimbatore, IEEE Conference Proceedings, pp 1–6
Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-level picture thresholding using entropy of the histogram. Comput Vision Graph Image Process 29(3):273–285
Kaur J, Agrawal S, Vig R (2011) A comparative analysis of thresholding and edge detection segmentation techniques. Int J Comput Appl 39:29
Kim BG, Shim JI, Park DJ (2003) Fast image segmentation based on multi-resolution analysis and wavelets. Pattern Recognit Lett 24:2995–3006
Kumar R, Parashar T, Verma G (2012) Gentic algorithm and DWT based multilevel automatic thresholding approach for vehicle extraction. Int J Soft Comput Eng (IJSCE) 2(2):17–21
Lan J, Zeng Y (2013) Multi-threshold image segmentation using maximum fuzzy entropy based on a new 2D histogram. Optik 124(18):3756–3760 (Elsevier)
Osuna-Enciso V, Cuevas E, Sossa H (2013) A comparison of nature inspired algorithms for multi threshold image segmentation. Expert Syst Appl 40:1213–1219
Otsu N (1978) A threshold selection method from gray level histrogram. IEEE Trans Syst Man Cybern 8(1):62–66
Ouadfel S, Meshoul S (2013) A fully adaptive and hybrid method for image segmentation using multilevel thresholding. Int J Image Graph Signal Process 1:46–57
Pei Z, Zhao Y, Liu Z (2009) Image segmentation based on differential evolution algorithm. In: International conference on image analysis and signal processing, Taizhou, IEEE Conference Proceedings, pp 48–51
Peng B, Zhang L, Zhang D (2011) Automatic image segmentation by dynamic region merging. IEEE Trans Image Process 20(12):3592–3605
Sathya PD, Kayalvizhi R (2012) Comparison of intelligent techniques for multilevel thresholding problem. Int J Signal Imaging Syst Eng 5(1):43–57
Sharif M, Fathy M, Tayefeh Mahmoudi M (2002) A classified and comparative study of edge detection algorithms. In: International conference on information technology: coding and computing (ITCC), IEEE Conference Proceedings
Sridevi M, Mala C, Sivasankar E, You I (2014) Optimized multilevel threshold selection using evolutionary computing. In: Interntional conference on Network based information system, Italy, accepted for publication in IEEE conference proceedings
Strang G, Nguyen T (1996) Wavelets and filter banks. Wellesley-Cambridge Press
Yen JC, Chang FJ, Chang S (1995) A new criterion for automatic multilevel thresholding. IEEE Trans Image Process 4:370–378
Yin PY, Chen LH (1997) A fast iterative scheme for multilevel thresholding methods. Signal Process 60:305–313
Zahara E, Fan SKS, Tsai DM (2005) Optimal multi thresholding using a hybrid optimization approach. Pattern Recognit Lett 26:1082–1095
Zhang GM, Chen SP, Liao JN (2011) Otsu image segmentation algorithm based on morphology and wavelet transformation. In: Proceedings of International conference on computer research and development (ICCRD), vol 1. IEEE, Shanghai, pp 279–283
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by A. Jara, M. R. Ogiela, I. You and F.-Y. Leu.
Rights and permissions
About this article
Cite this article
Mala, C., Sridevi, M. Multilevel threshold selection for image segmentation using soft computing techniques. Soft Comput 20, 1793–1810 (2016). https://doi.org/10.1007/s00500-015-1677-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-015-1677-6