Skip to main content
Log in

Hybrid achievement oriented computational chemotaxis in bacterial foraging optimization: a comparative study on numerical benchmark

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The social foraging behavior of Escherichia coli bacteria has been recently used for solving complex real-world search and optimization problems. Bacterial foraging optimization algorithm (BFOA) is an important global optimization method inspired from this behavior. In this paper, a novel method called chemotaxis differential evolution optimization algorithm (CDEOA), which augments BFOA with conditional introduction of differential evolution (DE) and Random Search operators, is proposed. Introduction of these operators is done considering the number of successful run and unsuccessful tumble steps of bacteria. CDEOA was compared with the classical BFOA, two variants of BFOA which use DE operators [Adaptive Chemotactic Bacterial Swarm Foraging Optimization with Differential Evolution Strategy (ACBSFO_DES)], chemotaxis differential evolution (CDE), and the classical DE on all 30 numerical functions of the 2014 Congress on Evolutionary Computation (CEC 2014) Special Session and Competition on Single Objective Real Parameter Numerical Optimization suite. CDEOA was also compared with four state-of-the-art DE variants that competed in CEC 2014. Statistics of the computer simulations over this benchmark suite indicate that CDEOA outperforms, or is comparable to, its competitors in terms of the quality of final solution and its convergence rates for high-dimensional problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Note that swim and run can be used interchangeably in the literature of BFOA.

  2. http://www.icsi.berkeley.edu/~storn/code.html.

References

  • Abraham A et al (2008) Analysis of reproduction operator in bacterial foraging optimization algorithm. In: Evolutionary computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on. IEEE, pp 1476–1483

  • Bäck T, Schwefel HP (1993) An overview of evolutionary algorithms for parameter optimization. Evol Comput 1(1):1–23. doi:10.1162/evco.1993.1.1.1. ISSN: 1063–6560

  • Biswas A et al (2007b) Synergy of PSO and bacterial foraging optimization—a comparative study on numerical benchmarks. In: Innovations in hybrid intelligent systems. Springer, Berlin, pp 255–263

  • Biswas A et al (2007a) A synergy of differential evolution and bacterial foraging optimization for global optimization. Neural Netw World 17(6):607

    Google Scholar 

  • Biswas A et al (2010) Stability analysis of the reproduction operator in bacterial foraging optimization. Theor Comput Sci 411(21):2127–2139. doi:10.1016/j.tcs.2010.03.005. ISSN: 03043975

  • Črepinšek M, Liu SH, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput Surv 45(3):1–33. doi:10.1145/2480741.2480752. ISSN: 03600300

  • Das S et al (2009) On stability of the chemotactic dynamics in bacterial-foraging optimization algorithm. IEEE Trans Syst Man Cybern Part A Syst Humans 39(3):670–679. doi:10.1109/TSMCA.2008.2011474. ISSN: 1083–4427

  • Dasgupta S et al (2009) Adaptive computational chemotaxis in bacterial foraging optimization: an analysis. IEEE Trans Evol Comput 13(4):919–941. doi:10.1109/TEVC.2009.2021982 Issn: 1089–778X

    Article  Google Scholar 

  • De Jong KA, Spears WM (1992) A formal analysis of the role of multi-point crossover in genetic algorithms. Ann Math Artif Intell 5(1):1–26

    Article  MATH  Google Scholar 

  • Eiben AE, Schippers CA (1998) On evolutionary exploration and exploitation. Fundam Informaticae 35(1):35–50

    MATH  Google Scholar 

  • Hu Z, Bao Y, Xiong T (2014) Partial opposition-based adaptive differential evolution algorithms: evaluation on the CEC 2014 benchmark set for real-parameter optimization. In: Evolutionary computation (CEC), 2014 IEEE Congress on. IEEE, pp 2259–2265

  • Jarraya Y et al (2013) A hybrid computational chemotaxis in bacterial foraging optimization algorithm for global numerical optimization. In: Cybernetics (CYBCONF), 2013 IEEE international conference on IEEE, pp 213–218

  • Kennedy J (2011) Particle swarm optimization. In: Sammut C, Webb GI (eds) Encyclopedia of machine learning. Springer, US, pp 760–766 Isbn: 978-0-387-30768-8, 978-0-387-30164-8

    Google Scholar 

  • Kim DH, Cho JH (2005) Bacterial foraging based neural network fuzzy learning. In: Proc in IICAI, pp 2030–2036

  • Kim DH, Abraham A, Cho JH (2007) A hybrid genetic algorithm and bacterial foraging approach for global optimization. Inf Sci 177(18):3918–3937

    Article  Google Scholar 

  • Korani WM, Dorrah HT, Emara HM (2009) Bacterial foraging oriented by particle swarm optimization strategy for PID tuning. In: Computational intelligence in robotics and automation (CIRA), 2009 IEEE international symposium on IEEE, pp 445–450

  • Li Z et al (2014) Differential evolution strategy based on the constraint of fitness values classification. In: Evolutionary computation (CEC), 2014 IEEE Congress on IEEE, pp 1454–1460

  • Liang JJ, Qu BY, Suganthan PN (2013) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. In: Computational intelligence laboratory

  • Liu Y, Passino K (2002) Biomimicry of social foraging bacteria for distributed optimization: models, principles, and emergent behaviors. J Optim Theory Appl 115(3):603–628. doi:10.1023/A:1021207331209 Issn: 0022-3239

    Article  MATH  MathSciNet  Google Scholar 

  • Luke S (2009) Essentials of Metaheuristics. Available for free at http://cs.gmu.edu/~sean/book/metaheuristics/. Lulu

  • Mishra S (2005) A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation. Evol Comput IEEE Trans 9(1):61– 73

    Article  Google Scholar 

  • Mishra S, Bhende CN (2007) Bacterial foraging technique-based optimized active power filter for load compensation. Power Deliv IEEE Trans 22(1):457–465

    Article  Google Scholar 

  • Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. Control Syst IEEE 22(3):52–67

    Article  MathSciNet  Google Scholar 

  • Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1(1):33–57. doi:10.1007/s11721-007-0002-0

    Article  Google Scholar 

  • Qin AK, Li X (2013) Differential evolution on the CEC-2013 single-objective continuous optimization testbed. In: Evolutionary computation (CEC), 2013 IEEE Congress on IEEE, pp 1099–1106

  • Qu BY et al (2014) Memetic differential evolution based on fitness Euclidean-distance ratio. In: Evolutionary computation (CEC), 2014 IEEE Congress on IEEE, pp 2266–2273

  • Storn R (1996) On the usage of differential evolution for function optimization. In: Fuzzy information processing society, 1996. NAFIPS., 1996 Biennial Conference of the North American. IEEE, pp 519–523

  • Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MATH  MathSciNet  Google Scholar 

  • Tripathy M et al (2006) Transmission loss reduction based on FACTS and bacteria foraging algorithm. In: Parallel problem solving from nature-PPSN IX. Springer, Brelin, pp 222–231

  • Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85. doi:10.1007/BF00175354

    Article  Google Scholar 

  • Yu C et al (2014) Fireworks algorithm with differential mutation for solving the cec 2014 competition problems. In: Evolutionary computation (CEC), 2014 IEEE Congress on IEEE, pp 3238–3245

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Emre Yıldız.

Additional information

Communicated by E. Lughofer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yıldız, Y.E., Altun, O. Hybrid achievement oriented computational chemotaxis in bacterial foraging optimization: a comparative study on numerical benchmark. Soft Comput 19, 3647–3663 (2015). https://doi.org/10.1007/s00500-015-1687-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1687-4

Keywords

Navigation