Skip to main content
Log in

Extended minimum-squared error algorithm for robust face recognition via auxiliary mirror samples

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The changes of face images with poses and polarized illuminations increase data uncertainty in face recognition. In fact, synthesized mirror samples can be recognized as representations of the left–right deflection of poses or illuminations of the face. Symmetrical face images generated from the original face images also provide more observations of the face which is useful for improving the accuracy of face recognition. In this paper, to the best of our knowledge, it is the first time that the well-known minimum squared error classification (MSEC) algorithm is used to perform face recognition on an extended face database using synthesized mirror training samples, which is titled as extended minimum squared error classification (EMSEC). By modifying the MSE classification rule, we append the mirror samples to the training set for gaining better classification performance. First, we merge original training samples and mirror samples synthesized from original training samples per subject as mixed training samples. Second, EMSEC algorithm exploits mixed training samples to obtain the projection matrix that can best transform the mixed training samples into predefined class labels. Third, the projection matrix is exploited to simultaneously obtain transform results of the test sample and its nearest neighbor from the mixed training sample set. Finally, we ultimately classify the test sample by combining the transform results of the test sample and the nearest neighbor. As an extension of MSEC, EMSEC reduces the uncertainty of the face observation by auxiliary mirror samples, so that it has better robustness classification performance than traditional MSEC. Experimental results on the ORL, GT, and FERET databases show that EMSEC has better generalization ability than traditional MSEC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Belhumeour PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces versus fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  • Belloni A, Chernozhukov V (2011) \(l_1 \)-penalized quantile regression in high-dimensional sparse models. Ann Stat 39(1):82–130

    Article  MathSciNet  MATH  Google Scholar 

  • Beymer D, Poggio T (1995) Face recognition from one example view. In: Proceedings of the Fifth International Conference on Computer Vision, pp 500–507

  • Bickel PJ, Ritov Y, Tsybakov AB (2009) Simultaneous analysis of Lasso and Dantzig selector. Ann Stat 37:1705–1732

    Article  MathSciNet  MATH  Google Scholar 

  • Billings SA, Lee KL (2002) Nonlinear Fisher discriminant analysis using a minimum squared error cost function and the orthogonal least squares algorithm. Neural Netw 15(1):263–270

    Article  Google Scholar 

  • Chen S, Hong X, Luk BL, Harris CJ (2009) Orthogonal-least-squares regression: a unified approach for data modelling. Neurocomputing 72(10–12):2670–2681

    Article  Google Scholar 

  • Dalton LA, Dougherty ER (2011) Bayesian minimum mean-square error estimation for classification error—Part I: definition and the Bayesian MMSE error estimator for discrete classification. IEEE Trans Signal Process 59(1):115–129

    Article  MathSciNet  Google Scholar 

  • Dalton LA, Dougherty ER (2012) Exact sample conditioned MSE performance of the Bayesian MMSE estimator for classification error—Part I: representation. IEEE Trans Signal Process 60(5):2575–2587

    Article  MathSciNet  Google Scholar 

  • Dalton LA, Dougherty ER (2012) Optimal mean-square-error calibration of classifier error estimators under Bayesian models. Pattern Recognit 45(6):2308–2320

    Article  MATH  Google Scholar 

  • Deng WH, Hu JN, Guo J, Cai WD, Feng DG (2010) Robust, accurate and efficient face recognition from a single training image: a uniform pursuit approach. Pattern Recognit 43:1748–1762

    Article  MATH  Google Scholar 

  • Deng W, Hu J, Guo J (2012) Extended SRC: undersampled face recognition via intraclass variant dictionary. IEEE Trans Pattern Anal Mach Intell 34(9):1864–1870

    Article  Google Scholar 

  • Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley, New York

  • Hastie T, Park MY (2007) \(l_1 \)-Regularization path algorithm for generalized linear models. J R Stat Soc B 69:659–677

    Article  MathSciNet  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J et al (2005) The elements of statistical learning: data mining, inference and prediction. Math Intell 27(2):83–85

  • Jian M, Lam KM, Dong J (2011) Illumination compensation and enhancement for face recognition. In: Proceedings of Asia-Pacific Signal and Information Processing Association Annual Summit Conference (APSIPA ASC’2011), paper Wed-AM.RS6

  • Liu C, Wechsler H (2002) Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans Image Process 11(4):467–476

    Article  Google Scholar 

  • Liu XM, Chen T, Kumar BVKV (2003) Face authentication for multiple subjects using eigenflow[J]. Pattern Recognit 36(2):313–328

    Article  Google Scholar 

  • Markovsky I, Huffel SV (2007) Overview of total least-squares methods. Signal Process 87(10):2283–2302

    Article  MATH  Google Scholar 

  • Martinez AM, Benavente R (1998) The AR face database. CVC Technical Report #24

  • Naseem I, Togneri R, Bennamoun M (2010) Linear regression for face recognition. IEEE Trans Pattern Anal Mach Intell 32(11):2106–2112

  • Saber E, Murat A (1998) Tekalp, Frontal-view face detection and facial feature extraction using color, shape and symmetry based cost functions. Pattern Recognit Lett 19(8):669–680

    Article  MATH  Google Scholar 

  • Sharma A, Dubey A, Tripathi P, Kumar V (2010) Pose invariant virtual classifiers from single training image using novel hybrid-eigenfaces. Neurocomputing 73(10–12):1868–1880

    Article  Google Scholar 

  • Song XN, Zheng YJ, Wu XJ, Yang XB, Yang JY (2010) A complete fuzzy discriminant analysis approach for face recognition. Appl Soft Comput 10:208–214

    Article  Google Scholar 

  • Swets DL, Weng JJ (1996) Using discriminant eigenfeatures for image retrieval. IEEE Trans Pattern Anal Mach Intell 18(8):831–836

  • Tan X, Chen S, Zhou Z-H, Zhang F (2006) Face recognition from a single image per person: a survey. Pattern Recognit 39(9):1725–1745

    Article  MATH  Google Scholar 

  • Tang D, Zhu N, Yu F, Chen W, Tang T (2014) A novel sparse representation method based on virtual samples for face recognition. Neural Comput Appl 24(3–4):513–519

    Article  Google Scholar 

  • Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  • Vetter T (1998) Synthesis of novel views from a single face image. Int J Comput Vis 28(2):102–116

    Article  MathSciNet  Google Scholar 

  • Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  • Wright J, Ma Y, Mairal J, Sapiro G (2010) Sparse representation for computer vision and pattern recognition. Proc IEEE 98(6):1031–1044

    Article  Google Scholar 

  • Xu X, He H, Hu D (2002) Efficient reinforcement learning using recursive least-squares methods. J Artif Intell Res 16:259–292

    MathSciNet  MATH  Google Scholar 

  • Xu Y, Yang J-Y, Yang J (2004) A reformative kernel Fisher discriminant analysis. Pattern Recognit 37(6):1299–1302

    Article  MATH  Google Scholar 

  • Xu Y, Zhang D, Jin Z, Li M, Yang JY (2006) A fast kernel-based nonlinear discriminant analysis for multi-class problems. Pattern Recognit 39(6):1026–1033

    Article  MATH  Google Scholar 

  • Xu Y, Zhang D, Yang J, Yang JY (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Trans Circuits Syst Video Technol 21(9):1255–1262

    Article  Google Scholar 

  • Xu Y, Zhu X, Li Z, Liu G et al (2013) Using the original and ‘symmetrical face’ training samples to perform representation based two-step face recognition. Pattern Recognit 46(4):1151–1158

    Article  Google Scholar 

  • Xu Y, Fang XZ, Zhu Q, Chen Y, You J, Liu H (2014) Modified minimum squared error algorithm for robust classification and face recognition experiments. Neurocomputing 135:253–261

    Article  Google Scholar 

  • Xu Y, Fang XZ, Li XL, Yang J, You J, Liu H, Teng SH (2014) Data uncertainty in face recognition. IEEE Trans Cybern 44(10):1950–1961

    Article  Google Scholar 

  • Xu Y, Li XL, Yang J, Zhang D (2014) Integrate the original face image and its mirror image for face recognition. Neurocomputing 131:191–199

    Article  Google Scholar 

  • Xu Y, Jin Z (2008) Down-sampling face images and low-resolution face recognition. In: Proc. 3rd Int. Conf. Innovative Comput. Inform. Control, pp 392–395

  • Xu J, Zhang X, Li Y (2001) Kernel MSEC algorithm: a unified framework for KFD, LS-SVM and KRR. In: Proceedings of the International Joint Conference on Neural Networks, pp 1486–14 91

  • Yang J, Yang JY (2003) Why can LDA be performed in PCA transformed space. Pattern Recognit 36(2):563–566

    Article  Google Scholar 

  • Yang J, Zhang D, Frangi AF, Yang JY (2004) Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26(1):131–137

    Article  Google Scholar 

  • Yao G, Ding R (2012) Two-stage least squares based iterative identification algorithm for controlled autoregressive moving average (CARMA) systems. Comput Math Appl 63(5):975–984

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang L, et al (2011) Sparse representation or collaborative representation: which helps face recognition? In: Proceedings of the ICCV

  • Zhao Y-P, Du Z-H, Zhang Z-A, Zhang H-B (2011) A fast method of feature extraction for kernel MSE. Neurocomputing 74(10):1654–1663

    Article  Google Scholar 

  • Zhu Q (2010) Reformative nonlinear feature extraction using kernel MSE. Neurocomputing 73(16–18):3334–3337

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their constructive advice. This work was supported by the National Science Foundation of China (Grant no. 61233011), the Natural Science Foundation of Jiangsu Province (Grant nos. BK2012700), the Foundation of Artificial Intelligence Key Laboratory of Sichuan Province (Grant no. 2012RZY02), the Open Project Program of the State Key Lab of CAD&CG of Zhejiang University (Grant no. A1418), the Foundation of Key Laboratory of Intelligent Computing & Signal Processing, Ministry of Education, Anhui University, Key Technologies R&D Program of Jiangsu Province (Grant no. BE2012031) and Science and Technology Planning Project of Wuxi City (Grant no. CYE11G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoning Song.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, C., Song, X., Yang, X. et al. Extended minimum-squared error algorithm for robust face recognition via auxiliary mirror samples. Soft Comput 20, 3177–3187 (2016). https://doi.org/10.1007/s00500-015-1692-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1692-7

Keywords

Navigation