Abstract
Classifying the pixels of satellite images into homogeneous regions is a very challenging task as different regions have different types of land covers. Some land covers contain more regions, while some contain relatively smaller regions (e.g., bridges, roads). In satellite image segmentation, no prior information is available about the number of clusters. Here, in this paper, we have solved this problem using the concepts of semi-supervised clustering which utilizes the property of unsupervised and supervised classification. Three cluster validity indices are utilized, which are simultaneously optimized using AMOSA, a modern multiobjective optimization technique based on the concepts of simulated annealing. The first two cluster validity indices, symmetry distance based Sym-index, and Euclidean distance based I-index, are based on unsupervised properties. The last one is a supervised information based cluster validity index, Minkowski index. For supervised information, initially fuzzy C-mean clustering technique is used. Thereafter, based on the highest membership values of the data points to their respective clusters, randomly 10 % data points with their class labels are chosen. The effectiveness of this proposed semi-supervised clustering technique is demonstrated on three satellite image data sets of different cities of India. Results are also compared with existing clustering techniques.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig8_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig9_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig10_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig11_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig12_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig13_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig14_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig15_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig16_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig17_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig18_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig19_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig20_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig21_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig22_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig23_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig24_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1701-x/MediaObjects/500_2015_1701_Fig25_HTML.gif)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- SOO:
-
Single objective optimization
- MOO:
-
Multiobjective optimization
- AMOSA:
-
Archived multiobjective simulated annealing based technique
- SA:
-
Simulated annealing
- FCM:
-
Fuzzy C-means
- MOGA:
-
Multiobjective genetic algorithm
References
Altun Y, McAllester D, Belkin M (2005) Maximum margin semi-supervised learning for structured variables. In: Advances in neural information processing systems. MIT Press, Cambridge, MA, pp 33–40
Bandyopadhyay S, Pal SK (2001) Pixel classification using variable string genetic algorithms with chromosome differentiation. IEEE Trans Geosci Remote Sens 39(2):303–308
Bandyopadhyay S, Saha S (2008) A point symmetry-based clustering technique for automatic evolution of clusters. IEEE Trans Knowl Data Eng 20(11):1441–1457
Bandyopadhyay S, Maulik U, Mukhopadhyay A (2007) Multiobjective genetic clustering for pixel classification in remote sensing imagery. IEEE Trans Geosci Remote Sens 45(5):1506–1511
Bandyopadhyay S, Saha S, Maulik U, Deb K (2008) A simulated annealing-based multiobjective optimization algorithm: AMOSA. IEEE Trans Evolut Comput 12(3):269–283
Basu S, Banerjee A, Mooney RJ (2004) Active semi-supervision for pairwise constrained clustering. Proceedings of the SIAM International Conference on Data Mining (SDM-2004), Buena Vista, FL, pp–344
Ben-Hur A, Guyon I (2003) Detecting stable clusters using principal component analysis. In: Functional genomics, Springer, Berlin, pp 159–182
Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Kluwer, Norwell
Bilenko M, Basu S, Mooney RJ (2004) Integrating constraints and metric learning in semi-supervised clustering. In: Proceedings of the twenty-first international conference on Machine learning, ACM, pp 81–88
Chapelle O, Zien A (2004) Semi-supervised classification by low density separation. In: AI STATS. MIT Press, Cambridge, MA
Chapelle O, Schölkopf B, Zien A et al (2006) Semi-supervised learning, vol 2. MIT press, Cambridge
Das S, Konar A (2009) Automatic image pixel clustering with an improved differential evolution. Appl Soft Comput 9(1):226–236
Deb K (2001) Multi-objective optimization using evolutionary algorithms, vol 16. Wiley, New York
Fan J, Han M, Wang J (2009) Single point iterative weighted fuzzy c-means clustering algorithm for remote sensing image segmentation. Pattern Recogn 42(11):2527–2540
Geman S, Geman D (1984) Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741
Kirkpatrick S, Gelatt CD, Vecchi MP et al (1983) Optimization by simmulated annealing. Science 220(4598):671–680
Maulik U, Bandyopadhyay S (2002) Performance evaluation of some clustering algorithms and validity indices. IEEE Trans Pattern Anal Mach Intell 24(12):1650–1654
Maulik U, Bandyopadhyay S (2003) Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification. IEEE Trans Geosci Remote Sens 41(5):1075–1081
Maulik U, Saha I (2009) Modified differential evolution based fuzzy clustering for pixel classification in remote sensing imagery. Pattern Recogn 42(9):2135–2149
Maulik U, Saha I (2010) Automatic fuzzy clustering using modified differential evolution for image classification. IEEE Trans Geosci Remote Sens 48(9):3503–3510
Richards JA, Richards J (1999) Remote sensing digital image analysis, vol 3. Springer, Berlin
Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65
Saha S, Bandyopadhyay S (2010) Application of a multiseed-based clustering technique for automatic satellite image segmentation. IEEE Geosci Remote Sens Lett 7(2):306–308
Saha S, Bandyopadhyay S (2013) A generalized automatic clustering algorithm in a multiobjective framework. Appl Soft Comput 13(1):89–108
Saha I, Maulik U, Bandyopadhyay S, Plewczynski D (2012a) Svmefc: Svm ensemble fuzzy clustering for satellite image segmentation. IEEE Geosci Remote Sens Lett 9(1):52–55
Saha S, Ekbal A, Alok AK (2012b) Semi-supervised clustering using multiobjective optimization. In: 2012 12th International Conference on Hybrid Intelligent Systems (HIS), IEEE, pp 360–365
Sathya P, Malathi L (2011) Classification and segmentation in satellite imagery using back propagation algorithm of ann and k-means algorithm. Int J Mach Learn Comput 1(4):422–426
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Y.-S. Ong.
Rights and permissions
About this article
Cite this article
Alok, A.K., Saha, S. & Ekbal, A. Multi-objective semi-supervised clustering for automatic pixel classification from remote sensing imagery. Soft Comput 20, 4733–4751 (2016). https://doi.org/10.1007/s00500-015-1701-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-015-1701-x