Skip to main content
Log in

A novel multi-population coevolution immune optimization algorithm

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

A novel multi-population coevolution immune optimization algorithm (MCIA) is proposed to solve numerical and engineering optimization problem in real world. MCIA is inspired by the mechanism that how neuroendocrine system affects T cells and B cells in immune system to eliminate the danger and the main idea of MCIA is to promote three populations, population B, population T and assistant population A, to coevolution through self-adjusted clone operator, the applied dislocation arithmetic crossover, cloud self-adapting mutation operator and local search operator to produce lymphocyte with high affinity. Self-adjusted clone operator and selecting elite elements in the memory population enable the search space be broadened and compressed, cloud self-adapting mutation operator characterized with randomness, stable topotaxis and local search technique enable global and local search be integrated to find the global optima with high population diversity. Therefore, several operators enable MCIA enjoy the capability of broadening the elite search space, boosting the global and local search around elites in search space. The performance comparisons of MCIA with three known immune algorithms and other three optimization algorithms in optimizing twelve benchmark functions indicate that MCIA is an effective algorithm for solving global optimization problems with high precision, good robustness and low time complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdi K, Fathian M, Safari E (2012) A novel algorithm based on hybridization of artificial immune system and simulated annealing for clustering problem. Int J Adv Manuf Technol 60:723–732

  • Aickelin U, Bentley P, Cayzer S, Kim J (2003) Danger theory: the link between AIS and IDS. Lect Notes Comput Sci 2787:147–155

    Article  Google Scholar 

  • Ataser Z, Alpaslan FN (2013) Self-adaptive negative selection using local outlier factor. Comput Inform Sci III:161–169

  • Bao L, Yongsheng D (2006) A two-level controller based on the modulation principle of testosterone release. J Shanghai Jiaotong Univ 40(5):822–824

    Google Scholar 

  • Bao L, Yongsheng D (2006) A novel intelligent controller based on hormone modulation of neuralendocrine system. Comput Simul 23(2):129–132

    Google Scholar 

  • Bao L, Zhongwei Z, Yongsheng D (2006) Decoupling control based on bi-directional regulation principle of growth hormone. J Southeast Univ (Natural Science edition) 36(SuppI):5–8

  • Bao L, Yongsheng D, Junhong W (2008) An intelligent controller based on ultra-short feedback of neuroendocrine system. Comput Simul 25(1):188–191

    Google Scholar 

  • Brajevic I (2015) Crossover-based artificial bee colony algorithm for constrained optimization problems. Neural Comput Appl. doi:10.1007/s00521-015-1826-y

  • Casanova-Acebes M, A-Gonza’lez N, Weiss LA, Hidalgo A (2014) Innate immune cells as homeostatic regulators of the hematopoietic niche. Int J Hematol 99:685–694

  • Castro LN, Zuben FJ (2002) Learning and optimization using the clonal selection principle. IEEE Trans Evol Comput 6:239–251

  • Charles JF, Nakamura MC (2014) Bone and the innate immune system. Curr Osteoporos Rep 12:1–8

    Article  Google Scholar 

  • Chen M-H, Chang P-C, Lin C-H (2013) A self-evolving artificial immune system II with T-cell and B-cell for permutation flow-shop problem. J Intell Manuf

  • Cheng Y-H (2014) Computational intelligence-based polymerase chain reaction primer selection based on a novel teaching–learning-based optimization. IET Nanobiotechnol 8(4):238–246

  • Crepinšek M, Liu S-H, Mernik L (2012) A note on teaching–learning-based optimization algorithm. Inform Sci 212:79–93

    Article  Google Scholar 

  • Cuevas E, Gonza’lez M (2013) An optimization algorithm for multimodal functions inspired by collective animal behavior. Soft Comput 17:489–502

    Article  Google Scholar 

  • Dasgupta D (1999) Artificial immune systems and their applications. ISBN 978-3-642-64174-9 (print), 978-3-642-59901-9 (online)

  • de Castro LN, Timmis J (2002) Artificial immune systems: a new computational intelligence approach. Springer, New York

  • Deepak BBVL, Parhi D (2013) Intelligent adaptive immune-based motion planner of a mobile robot in cluttered environment. Intel Serv Robotics 6:155–162

    Article  Google Scholar 

  • Ding Y (2010) Research development of bio-network based intelligent control and optimization. Control Eng China 17(4):416–421

    Google Scholar 

  • Ding YS, Liu B, Ren LH (2007) Intelligent decoupling control system inspired from modulation of the growth hormone in neuroendocrine system. Dyn Contin Discrete Impulsi Syst Ser B Appl Algorithms 14(5):679–693

  • Dorigo M, Gambardella LM (1997) Ant colony system: a cooperating learning approach to the travelling salesman problem. IEEE T. Evol Comput 1(1):53–66

    Article  Google Scholar 

  • Ettefagh MM, Javash MS (2014) Optimal synthesis of four-bar steering mechanism using AIS and genetic algorithms. J Mech Sci Technol 28(6):2351–2362

  • Farhy LS, Straume M et al (2011) A construct of interactive control of the GH axis in the male. Am J Physiol Regulat Infest Comp Physiol 281(I):38–51

  • Gong M, Jiao L, Ma FLW (2010) Immune algorithm with orthogonal design based initialization, cloning, and selection for global optimization. Knowl Inf Syst 25:523–549

    Article  Google Scholar 

  • Greensmith J, Aickelin U, Tedesco G (2010) Information fusion for anomaly detection with the dendritic cell algorithm. Inform Fusion 11(1):21–34

    Article  Google Scholar 

  • Hornung T, Wenzel J (2014) Innate immune-response mechanisms in dermatomyositis: an update on pathogenesis, diagnosis and treatment. Drugs 74:981–998

    Article  Google Scholar 

  • Huan H, Yongsheng D, Kuangrong H et al (2008) A neuroendocrine-based intelligent controller of parallel robot. Mach Des Res 24(6):35–38 (31)

  • Jamshidi R, Esfahani MMS (2013) A novel hybrid method for supply chain optimization with capacity constraint and shipping option. Int J Adv Manuf Technol 67:1563–1575

  • Janosky M, Sabado RL, Cruz C, Vengco I, Hasan F, Winer A, Moy L, Adams S (2014) MAGE-specific T cells detected directly ex-vivo correlate with complete remission in metastatic breast cancer patients after sequential immune-endocrine therapy. J ImmunoTher Cancer (Janosky et al., J ImmunoTher Cancer 2014, 2:32. http://www.immunotherapyofcancer.org/content/2/1/32)

  • Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214:108–132

    MathSciNet  MATH  Google Scholar 

  • Karimi-Majd A-M, Mohammad F, Babak A (2014) A hybrid artificial immune network for detecting communities in complex networks. Computing. doi:10.1007/s00607-014-0433-6

  • Karthikeyan P, Baskar S (2015) Genetic algorithm with ensemble of immigrant strategies for multicast routing in Ad hoc networks. Soft Comput 19:489–498

    Article  Google Scholar 

  • Keenan DM, Licinio J, Veldhuis JD (2001) A feedback-controlled ensemble model of the stress-responsive hypothalamo–pituitary–adrenalaxis. PNAS 98(7):4028–4033

  • Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the 1995 IEEE international conference on neural networks, vol 4, pp 1942–1948

  • Kuo RJ, Chen SS, Cheng WC, Tsai CY (2014) Integration of artificial immune network and \(K\)-means for cluster analysis. Knowl Inf Syst 40:541–557

    Article  Google Scholar 

  • Lau HYK, Tsang WWP (2008) A parallel immune optimization algorithm for numeric function optimization. Evol Intell 71–185

  • Liang C, Peng L (2013) An automated diagnosis system of liver disease using artificial immune and genetic algorithms. J Med Syst 37:9932

    Article  Google Scholar 

  • Liang X, Ding YS, Hao KR et al (2010) A neuroendocrine regulation principle-based intelligent cooperative decoupling controller for PANCF coagulation bath. In: Proceedings of the 8th world congress on intelligent control and automation (WCICA 2010), Jinan

  • Li X, Lu L, Lei L, Guoqiang L, Xinping G (2015) Cooperative spectrum sensing based on an efficient adaptive artificial bee colony algorithm. Soft Comput 19:597–607

  • Liu B, Ding YS, Wang JH (2009) A collaborative optimized genetic algorithm based on regulation mechanism of neuroendocrine-immune system. In: Proceedings of the 2009 world summit on genetic and evolution and computation (GEC2 009), Shanghai

  • Liu B, Ding YS, Wang YH (2009) Intelligent network control system inspired from neuroendocrine-immune. In: Proceedings of the 6th international conference on fuzzy systems and knowledge discovery, Tianjin

  • Liu J, Zhao D, Liu C, Ding T, Yang L, Yin X, Zhou X (2015) Prion protein participates in the protection of mice from lipopolysaccharide infection by regulating the inflammatory process. J Mol Neurosci 55:279–287

    Article  Google Scholar 

  • Lu H, Jing L, Ruiyao N, Zheng Z (2014) Fitness distance analysis for parallel genetic algorithm in the test task scheduling problem. Soft Comput 18:2385–2396

  • McGill R, Tukey J, Larsen W (1978) Variations of boxplots. Am Stat 32:12–16

    Google Scholar 

  • Mohammadi M, Akbari A, Raahemi B, Nassersharif B, Asgharian H (2013) A fast anomaly detection system using probabilistic artificial immune algorithm capable of learning new attacks. Evol Intell 6:135–156

    Article  Google Scholar 

  • Muhamad AS, Deris S (2013) An artificial immune system for solving production scheduling problems: a review. Artif Intell Rev 97–108

  • Panda S, Chandra Swain S, Mahapatra S (2014) Design and analysis of bacteria foraging optimised TCSC-based controller for power system stability improvement. Int J Data Anal Tech Strateg 6(4)

  • Pan G, Li K, Ouyang A, Li K (2014) Hybrid immune algorithm based on greedy algorithm and delete-cross operator for solving TSP. Soft Comput. doi:10.1007/s00500-014-1522-3

  • Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22:52–67

    Article  Google Scholar 

  • Pham HA (2014) Reduction of function evaluation in differential evolution using nearest neighbor comparison. Vietnam J Comput Sci. doi:10.1007/s40595-014-0037-2

  • Prall SP, Muehlenbein MP (2014) Testosterone and immune function in primates: a brief summary with methodological considerations. Int J Primatol 35:805–824

    Article  Google Scholar 

  • Qu G, Lou Z (2013) Application of particle swarm algorithm in the optimal allocation of regional water resources based on immune evolutionary algorithm. J Shanghai Jiaotong Univ (Sci) 18(5):634–640

    Article  MathSciNet  Google Scholar 

  • Rao RV, Waghmare GG (2014) Complex constrained design optimisation using an elitist teaching–learning-based optimisation algorithm. Int J Metaheuristics 3(1)

  • Rezaee Jordehi A (2014a) A chaotic artificial immune system optimisation algorithm for solving global continuous optimisation problems. Neural Comput Appl. doi:10.1007/s00521-014-1751-5

  • Rezaee Jordehi A (2014b) A chaotic-based big bang–big crunch algorithm for solving global optimisation problems. Neural Comput Appl 25:1329–1335

  • Rezaee Jordehi A (2014c) Chaotic bat swarm optimisation (CBSO). Appl Soft Comput 26:523–530

  • Rezaee Jordehi A, Jasni J, Abd Wahab N, Kadir MZ, Javadi MS (2015) Enhanced leader PSO (ELPSO): A new PSO variant for solving global optimisation problems. Appl Soft Comput 26:401–417

    Article  Google Scholar 

  • Salmon HM, de Farias CM, Loureiro P, Pirmez L, Rossetto S, de Rodrigues PHA, Pirmez R, Delicato FC, da Costa Carmo LFR (2013) Intrusion detection system for wireless sensor networks using danger theory immune-inspired techniques. Int J Wirel Inf Netw 39–66

  • Shang R, Li Y, Jiao L (2015) Co-evolution-based immune clonal algorithm for clustering. Soft Comput. doi:10.1007/s00500-015-1602-z

  • Terzi S, Serin S (2014) Planning maintenance works on pavements through ant colony optimization. Neural Comput Appl 25:143–153

    Article  Google Scholar 

  • Van Peteghem V, Vanhoucke M (2013) An artificial immune system algorithm for the resource availability cost problem. Flex Serv Manuf J 122–144

  • Viswanathan V, Krishnamurthi I (2015) Finding relevant semantic association paths using semantic ant colony optimization algorithm. Soft Comput 19:251–260

  • Wu H, Zhang F, Wu L (2013) New swarm intelligence algorithm–wolf pack algorithm. Syst Eng Electron 35(11):2430–2438

    MATH  Google Scholar 

  • Xiao X, Li T, Zhang R (2015) An immune optimization based real-valued negative selection algorithm. Appl Intell 42:289–302

    Article  Google Scholar 

  • Yan X, Zhu Y, Chen H, Zhang H (2013) A novel hybrid artificial bee colony algorithm with crossover operator for numerical optimization. Nat Comput. doi:10.1007/s11047-013-9405-6

  • Yan X, Zhu Y, Chen H, Zhang H (2015) A novel hybrid artificial bee colony algorithm with crossover operator for numerical optimization. Nat Comput 14:169–184

    Article  MathSciNet  Google Scholar 

  • Yang P, Zeng K, Li C, Yang J, Wang S (2014) An improved hybrid immune algorithm for mechanism kinematic chain isomorphism identification in intelligent design. Soft Comput 1244–1230

  • Yizhou X, Kuangrong H, Yongsheng D (2007) Predictive PI controller for moisture of tobacco leaves based on the neuroendocrine feedback. Microcomput Appl 23(1):211–214

    Google Scholar 

  • Zhang XF, Liang ZX, Ding YS (2009) A study on distributed collaborative control scheme based on multi-immune agent. In: Proceedings of the 2009 IEEE international joint conference on computational sciences and optimization, Sanya

  • Zou W, Zhu Y, Chen H, Sui X (2010) A clustering approach using cooperative artificial bee colony algorithm. DDNS 16

Download references

Acknowledgments

This work was supported by following Foundation Items: the National High Technology Research and Development Program (863 Program) of China (No. 2011AA7013038 and 2012AA7013038), the National Natural Science Foundation of China (No. 61102109, 61473309 and 61472443), the 2014 Annual Aviation Science Funds (No. 20140196003 and 20141996018), Scientific Plan Projects Foundation of Shanxi Province of China (No. 2014JQ8331 and 2014JM8308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinke Xiao.

Additional information

Communicated by V. Loia.

Appendix

Appendix

(A) Rosenbrock function

$$\begin{aligned} \begin{array}{l} \min f( x)=\sum \limits _{l=1}^{n-1} {( {100( {x_{l+1} -x_l^2 })^2+( {x_l -1})^2})} \\ \quad -30\le x_l \le 30\quad \text{ for }\,\, \text{ all }\,\, l\,\,=1,2,\ldots ,n \\ \text{ where } f( {x^*})=0\,\, \text{ with }\,\, [ {x_1 \ldots x_n } ]=[ {1\ldots 1} ] \\ \end{array} \end{aligned}$$

(B) Step function

$$\begin{aligned} \begin{array}{l} \min f( x)=\sum \limits _{l=1}^n {( {\lfloor {( {x_l +0.5})^2} \rfloor })} \\ \quad -100\le x_l \le 100 \quad \text{ for }\,\, \text{ all }\,\, l{=1,2,}\ldots ,n \\ \text{ where } f( {x^*})=0\,\, \text{ with }\,\, [ {x_1 \ldots x_n } ]=[ {0\ldots 0}] \\ \end{array} \end{aligned}$$

(C) Quadric function

$$\begin{aligned} \begin{array}{l} \min f( x)=\sum \limits _{l=1}^n {\left( {\sum \limits _{j=1}^l {x_j } }\right) ^2} \\ \quad -10\le x_l \le 10 \quad \text{ for }\,\, \text{ all }\,\, l{=1,2,}\ldots ,n \\ \text{ where } f( {x^*})=0\,\, \text{ with }\,\, [ {x_1 \ldots x_n } ]=[ {0\ldots 0} ] \\ \end{array} \end{aligned}$$

(D) Schwefels function

$$\begin{aligned} \begin{array}{l} \min f( x)=418.9829-\sum \limits _{l=1}^n {\left( {x_l \sin \sqrt{| {x_l } |} }\right) } \\ \quad -500\le x_l \le 500\quad \text{ for }\,\, \text{ all }\,\, l{=1,2,}\ldots ,n \\ \text{ where } f( {x^*})=0\,\, \text{ with }\,\, [ {x_1 \ldots x_n } ]=[ {420.9687\ldots 420.9687}] \\ \end{array} \end{aligned}$$

(E) Rastrigin function

$$\begin{aligned} \begin{array}{l} \min f( x)=\sum \limits _{l=1}^n {( {x_l^2 -10\cos ( {2\pi x_l })+10})} \\ \quad -5.12\le x_l \le 5.12 \quad \text{ for }\,\, \text{ all }\,\, l{=1,2,}\ldots ,n \\ \text{ where } f( {x^*})=0\,\, \text{ with }\,\, [ {x_1 \ldots x_n } ]=[ {0\ldots 0}] \\ \end{array} \end{aligned}$$

(F) Ackley’s function

$$\begin{aligned} \begin{array}{l} \min f( x)=-20\mathrm{e}^{-0.2\left( {\sqrt{\frac{\sum \nolimits _{l=1}^n {x_l^n } }{n}} }\right) }-\mathrm{e}^{\frac{\sum \nolimits _{l=1}^n {\cos ( {2\pi x_l })} }{n}} \\ \quad + 20+e - 32\le x_l \le 32 \quad \text{ for }\,\, \text{ all }\,\, l{=1,2,}\ldots ,n \\ \text{ where } f( {x^*})=0\,\, \text{ with }\,\, [ {x_1 \ldots x_n } ]=[ {0\ldots 0}] \\ \end{array} \end{aligned}$$

(G) Griewank function:

$$\begin{aligned} \begin{array}{l} \min f( x)=\frac{\sum \nolimits _{l=1}^n {x_l^2 } }{4000}-\prod \limits _{l=1}^n {\cos \left( {\frac{x_l }{\sqrt{l} }}\right) } +1 \\ \quad - 600\le x_l \le 600 \quad \text{ for }\,\, \text{ all } \,\,l{=1,2,}\ldots ,n \\ \text{ where } f( {x^*})=0\,\, \text{ with }\,\, [ {x_1 \ldots x_n } ]=[ {0\ldots 0} ] \\ \end{array} \end{aligned}$$

(H) Rotate hyper-ellipsoid function

$$\begin{aligned} \begin{array}{l} \min f( x)=\sum \limits _{l=1}^n {\left( {\sum \limits _{ll=1}^l {x_{ll} } }\right) } ^2 \\ \quad -100\le x_l \le 100\quad \text{ for }\,\, \text{ all }\,\, l{=1,2,}\ldots ,n \\ \text{ where } f( {x^*})=0\,\, \text{ with }\,\, [ {x_1 \ldots x_n } ]=[ {0\ldots 0} ] \\ \end{array} \end{aligned}$$

(I) Shift sphere function

$$\begin{aligned} \begin{array}{l} \min f( x)=\sum \limits _{l=1}^n {( {x_l -1})^n} \\ \quad -100\le x_l \le 100 \quad \text{ for }\,\, \text{ all } \,\,l{=1,2,}\ldots ,n \\ \text{ where } f( {x^*})=0 \,\,\text{ with }\,\, [ {x_1 \ldots x_n } ]=[ {1\ldots 1}] \\ \end{array} \end{aligned}$$

(J) Shift Schwefel’s function

$$\begin{aligned} \begin{array}{l} \min f( x)=\sum \limits _{l=1}^n {\left( {\sum \limits _{ll=1}^l {( {x_{ll} -1})} }\right) } ^2 \\ \quad -100\le x_l \le 100\quad \text{ for }\,\, \text{ all } \,\,l{=1,2,}\ldots ,n \\ \text{ where } f( {x^*})=0 \,\,\text{ with }\,\, [ {x_1 \ldots x_n } ]=[ {1\ldots 1}] \\ \end{array} \end{aligned}$$

(K) Shift Rosenbrock function

$$\begin{aligned} \begin{array}{l} \min f( x)=\sum \limits _{l=1}^{n-1} {( {100( {x_{l+1} -1-( {x_l -1})^2})^2+( {x_l -1})^2})} \\ \quad -100\le x_l \le 100\quad \text{ for }\,\, \text{ all }\,\, l{=1,2,}\ldots ,n \\ \text{ where } f( {x^*})=0\,\, \text{ with }\,\, [ {x_1 \ldots x_n } ]=[ {1\ldots 1}] \\ \end{array} \end{aligned}$$

(L) Shift Rastrigin function

$$\begin{aligned} \begin{array}{l} \min f( x)=\sum \limits _{l=1}^n {( {( {x_l -1})^2-10\cos ( {2\pi ( {x_l -1})})+10})} \\ \quad -5\le x_l \le 5 \quad \text{ for }\,\, \text{ all }\,\, l{=1,2,}\ldots ,n \\ \text{ where } f( {x^*})=0 \,\,\text{ with }\,\, [ {x_1 \ldots x_n } ]=[ {1\ldots 1}] \\ \end{array} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Li, W., Liu, B. et al. A novel multi-population coevolution immune optimization algorithm. Soft Comput 20, 3657–3671 (2016). https://doi.org/10.1007/s00500-015-1724-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1724-3

Keywords

Navigation